論文の概要: Classifying COVID-19 Related Tweets for Fake News Detection and
Sentiment Analysis with BERT-based Models
- arxiv url: http://arxiv.org/abs/2304.00636v1
- Date: Sun, 2 Apr 2023 22:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 17:02:08.849734
- Title: Classifying COVID-19 Related Tweets for Fake News Detection and
Sentiment Analysis with BERT-based Models
- Title(参考訳): BERTモデルを用いたフェイクニュースの検出と知覚分析のためのCOVID-19関連つぶやきの分類
- Authors: Rabia Bounaama, Mohammed El Amine Abderrahim
- Abstract要約: 新型コロナウイルスのパンデミックに関連するデータセット"task1.c"を使用しました。
感情分析タスクは4128ツイート、フェイクニュース検出タスクは8661ツイートである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The present paper is about the participation of our team "techno" on
CERIST'22 shared tasks. We used an available dataset "task1.c" related to
covid-19 pandemic. It comprises 4128 tweets for sentiment analysis task and
8661 tweets for fake news detection task. We used natural language processing
tools with the combination of the most renowned pre-trained language models
BERT (Bidirectional Encoder Representations from Transformers). The results
shows the efficacy of pre-trained language models as we attained an accuracy of
0.93 for the sentiment analysis task and 0.90 for the fake news detection task.
- Abstract(参考訳): 本稿では,cerist'22共有タスクにおけるチーム"techno"の参加について述べる。
私たちは、covid-19パンデミックに関連する利用可能なデータセット"task1.c"を使用しました。
感情分析タスクは4128ツイート、偽ニュース検出タスクは8661ツイートである。
我々は、自然言語処理ツールを、最も有名な訓練済み言語モデルBERT(Bidirectional Encoder Representations from Transformers)の組み合わせで使用した。
その結果,感情分析タスクでは0.93,フェイクニュース検出タスクでは0.90と,事前学習言語モデルの有効性が示された。
関連論文リスト
- Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - UrduFake@FIRE2020: Shared Track on Fake News Identification in Urdu [62.6928395368204]
本稿では、ウルドゥー語における偽ニュース検出に関するFIRE 2020における最初の共有タスクの概要について述べる。
目標は、900の注釈付きニュース記事と400のニュース記事からなるデータセットを使って偽ニュースを特定することである。
データセットには、 (i) Health、 (ii) Sports、 (iii) Showbiz、 (iv) Technology、 (v) Businessの5つのドメインのニュースが含まれている。
論文 参考訳(メタデータ) (2022-07-25T03:46:51Z) - Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2020 [62.6928395368204]
タスクはバイナリ分類タスクとして設定され、ゴールはリアルニュースとフェイクニュースを区別することである。
トレーニング用に900の注釈付きニュース記事とテスト用に400のニュース記事のデータセットを作成した。
6カ国(インド、中国、エジプト、ドイツ、パキスタン、イギリス)の42チームが登録された。
論文 参考訳(メタデータ) (2022-07-25T03:41:32Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
我々は、ウルドゥー語に対する虐待と脅しの2つの共通タスクを提示する。
本研究では, (i) 乱用と非乱用というラベル付きツイートを含む手動注釈付きデータセットと, (ii) 脅威と非脅威の2つを提示する。
両方のサブタスクに対して、m-Bertベースのトランスモデルは最高の性能を示した。
論文 参考訳(メタデータ) (2022-07-14T07:38:13Z) - RuArg-2022: Argument Mining Evaluation [69.87149207721035]
本稿は、ロシア語テキストを扱う議論分析システムの最初のコンペティションの主催者の報告である。
新型コロナウイルスの感染拡大に伴う3つの話題について、9,550文(ソーシャルメディア投稿記事)のコーパスを用意した。
両タスクで第一位を獲得したシステムは、BERTアーキテクチャのNLI(Natural Language Inference)変種を使用した。
論文 参考訳(メタデータ) (2022-06-18T17:13:37Z) - Combat COVID-19 Infodemic Using Explainable Natural Language Processing
Models [15.782463163357976]
新型コロナの誤報対策として,DistilBERTとSHAPに基づく説明可能な自然言語処理モデルを提案する。
その結果は、新型コロナウイルスの誤報の検出と公衆の信頼向上に良い影響を与えました。
論文 参考訳(メタデータ) (2021-03-01T04:28:39Z) - Hostility Detection and Covid-19 Fake News Detection in Social Media [1.3499391168620467]
我々は,Hindi BERTとHindi FastTextモデルを用いて,乱用言語検出と特徴抽出を併用したモデルを構築した。
また、英語のツイートでCovid-19に関連する偽ニュースを識別するためのモデルを構築しています。
論文 参考訳(メタデータ) (2021-01-15T03:24:36Z) - LaDiff ULMFiT: A Layer Differentiated training approach for ULMFiT [0.0]
事前に訓練したUMMFiT arXiv:1801.06146モデルを訓練するためのレイヤ別トレーニング手順を提案する。
特別なトークンを使用してツイートの特定の部分をアノテートし、言語理解を改善し、モデルに関する洞察を得ました。
提案手法は、サブタスク「COVID19 Fake News Detection in English」で164人中61位にランクインした。
論文 参考訳(メタデータ) (2021-01-13T09:52:04Z) - Two Stage Transformer Model for COVID-19 Fake News Detection and Fact
Checking [0.3441021278275805]
我々は、自然言語処理のための機械学習モデルの状態を用いて、新型コロナウイルスの偽ニュース検出のための2段階の自動パイプラインを開発する。
最初のモデルは、新型コロナウイルス(COVID-19)の特定のクレームに関するユーザーのクレームに関する最も関連性の高い事実を検索する、新しい事実チェックアルゴリズムを活用する。
第2のモデルは、クレームと、手動でキュレートされたCOVID-19データセットから取得した真事実の間のテキストの関連性を計算することによって、クレームの真理レベルを検証する。
論文 参考訳(メタデータ) (2020-11-26T11:50:45Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
本稿では,WNUT-2020における情報発信型英語ツイートの識別に関する共有タスクについて述べる。
本システムは,従来の特徴量に基づく分類と,事前学習型言語モデルの最近の進歩を活かした,さまざまな機械学習手法のアンサンブルである。
我々の最高の性能モデルは、提供された検証セットのF1スコア0.9179、ブラインドテストセットの0.8805を達成する。
論文 参考訳(メタデータ) (2020-09-08T16:29:25Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。