論文の概要: Vision-Language Models for Vision Tasks: A Survey
- arxiv url: http://arxiv.org/abs/2304.00685v1
- Date: Mon, 3 Apr 2023 02:17:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 16:55:05.970008
- Title: Vision-Language Models for Vision Tasks: A Survey
- Title(参考訳): 視覚タスクのための視覚言語モデル:調査
- Authors: Jingyi Zhang, Jiaxing Huang, Sheng Jin and Shijian Lu
- Abstract要約: 視覚言語モデル(VLM)は、Webスケールの画像テキストペアからリッチな視覚言語相関を学習する。
本稿では,視覚認知タスクにおける視覚言語モデルの体系的レビューを行う。
- 参考スコア(独自算出の注目度): 47.25088891195888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most visual recognition studies rely heavily on crowd-labelled data in deep
neural networks (DNNs) training, and they usually train a DNN for each single
visual recognition task, leading to a laborious and time-consuming visual
recognition paradigm. To address the two challenges, Vision-Language Models
(VLMs) have been intensively investigated recently, which learns rich
vision-language correlation from web-scale image-text pairs that are almost
infinitely available on the Internet and enables zero-shot predictions on
various visual recognition tasks with a single VLM. This paper provides a
systematic review of visual language models for various visual recognition
tasks, including: (1) the background that introduces the development of visual
recognition paradigms; (2) the foundations of VLM that summarize the
widely-adopted network architectures, pre-training objectives, and downstream
tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4)
the review and categorization of existing VLM pre-training methods, VLM
transfer learning methods, and VLM knowledge distillation methods; (5) the
benchmarking, analysis and discussion of the reviewed methods; (6) several
research challenges and potential research directions that could be pursued in
the future VLM studies for visual recognition. A project associated with this
survey has been created at https://github.com/jingyi0000/VLM_survey.
- Abstract(参考訳): ほとんどの視覚認識研究は、ディープニューラルネットワーク(dnn)トレーニングにおけるクラウドラベルデータに大きく依存しており、それらは通常、単一の視覚認識タスクごとにdnnを訓練し、手間と時間を要する視覚認識パラダイムへと繋がる。
この2つの課題に対処するため、視覚言語モデル(VLM)は近年、インターネット上でほぼ無限に利用できるWebスケールの画像テキストペアからリッチな視覚言語相関を学習し、単一のVLMを用いて様々な視覚認識タスクのゼロショット予測を可能にする、集中的に研究されている。
This paper provides a systematic review of visual language models for various visual recognition tasks, including: (1) the background that introduces the development of visual recognition paradigms; (2) the foundations of VLM that summarize the widely-adopted network architectures, pre-training objectives, and downstream tasks; (3) the widely-adopted datasets in VLM pre-training and evaluations; (4) the review and categorization of existing VLM pre-training methods, VLM transfer learning methods, and VLM knowledge distillation methods; (5) the benchmarking, analysis and discussion of the reviewed methods; (6) several research challenges and potential research directions that could be pursued in the future VLM studies for visual recognition.
この調査に関連するプロジェクトはhttps://github.com/jingyi0000/vlm_surveyで作成されている。
関連論文リスト
- VLM's Eye Examination: Instruct and Inspect Visual Competency of Vision Language Models [19.291697178628546]
ビジョン言語モデル(VLM)は、様々なベンチマークで有望な推論能力を示している。
本研究では,VLMがどのようにイメージを知覚するかを調べるために,視線検査プロセスを提案する。
論文 参考訳(メタデータ) (2024-09-23T07:15:29Z) - Response Wide Shut: Surprising Observations in Basic Vision Language Model Capabilities [30.176918208200604]
VLM(Vision-Language Models)は、様々な複雑なコンピュータビジョン問題に対処するための汎用ツールとして登場した。
これらのモデルは高い能力を持つが、いくつかの基本的な視覚的理解スキルが欠けていることが示されている。
本稿では,基本的な視覚課題におけるSoTA VLMの限界を理解することを目的とする。
論文 参考訳(メタデータ) (2024-08-13T08:26:32Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
視覚中心のアプローチで設計したマルチモーダルLLM(MLLM)のファミリーであるCambrian-1を紹介する。
本研究は,様々な視覚表現を評価するためのインタフェースとして,LLMとビジュアルインストラクションチューニングを用いた。
モデルウェイト、コード、サポートツール、データセット、詳細なインストラクションチューニングと評価のレシピを提供しています。
論文 参考訳(メタデータ) (2024-06-24T17:59:42Z) - Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs [83.24033574914425]
視覚的問題解決に関わる知覚と推論のプロセスを切り離すために設計された革新的フレームワークであるPrismを提示する。
プリズムは、VLMを利用してテキスト形式で視覚情報を抽出・調音する知覚段階と、抽出された視覚情報に基づいて応答を定式化する推論段階と、2つの異なる段階から構成される。
私たちの分析フレームワークは、視覚言語タスクのコスト効率のよいソリューションとして、Prismの可能性について、いくつかの貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-06-20T17:54:03Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。