論文の概要: Federated Kalman Filter for Secure IoT-based Device Monitoring Services
- arxiv url: http://arxiv.org/abs/2304.00991v1
- Date: Mon, 3 Apr 2023 13:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 15:12:53.780615
- Title: Federated Kalman Filter for Secure IoT-based Device Monitoring Services
- Title(参考訳): セキュアなiotベースのデバイス監視サービスのためのフェデレーションカルマンフィルタ
- Authors: Marc Jayson Baucas and Petros Spachos
- Abstract要約: デバイス監視サービスは、データ収集と送信の性質により、プライバシの問題に陥る。
フェデレートカルマンフィルタ(FKF)とフェデレーションラーニングアプローチとプライバシ保護のためのプライベートブロックチェーン技術を組み合わせたプラットフォームを導入する。
- 参考スコア(独自算出の注目度): 7.14252162318551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Device monitoring services have increased in popularity with the evolution of
recent technology and the continuously increased number of Internet of Things
(IoT) devices. Among the popular services are the ones that use device location
information. However, these services run into privacy issues due to the nature
of data collection and transmission. In this work, we introduce a platform
incorporating Federated Kalman Filter (FKF) with a federated learning approach
and private blockchain technology for privacy preservation. We analyze the
accuracy of the proposed design against a standard Kalman Filter (KF)
implementation of localization based on the Received Signal Strength Indicator
(RSSI). The experimental results reveal significant potential for improved data
estimation for RSSI-based localization in device monitoring.
- Abstract(参考訳): デバイス監視サービスは、最近の技術の進化と、継続的に増加するモノのインターネット(IoT)デバイスによって人気が高まっている。
人気のサービスには、デバイス位置情報を使用するサービスがある。
しかし、これらのサービスはデータ収集と送信の性質上、プライバシーの問題にぶつかる。
本研究では,フェデレートカルマンフィルタ(FKF)とフェデレーションラーニングアプローチとプライバシ保護のためのプライベートブロックチェーン技術を組み合わせたプラットフォームを導入する。
標準カルマンフィルタ (kf) による受信信号強度指標 (rssi) に基づく位置推定手法に対する提案設計の精度について検討した。
実験結果から、デバイス監視におけるRSSIに基づくローカライゼーションのためのデータ推定の改善の可能性が示された。
関連論文リスト
- SPOQchain: Platform for Secure, Scalable, and Privacy-Preserving Supply Chain Tracing and Counterfeit Protection [46.68279506084277]
この研究は、包括的なトレーサビリティと独創性検証を提供する、ブロックチェーンベースの新しいプラットフォームであるSPOQchainを提案する。
プライバシとセキュリティの側面を分析し、サプライチェーンのトレーシングの将来に対するSPOQチェーンの必要性と資格を実証する。
論文 参考訳(メタデータ) (2024-08-30T07:15:43Z) - Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
物体検出は、IoV(Internet of Vehicles)の鍵となる技術の一つである
現在のオブジェクト検出方法は、主に集中的な深層トレーニングに基づいており、エッジデバイスが取得したセンシティブなデータをサーバにアップロードする必要がある。
そこで本研究では,よく訓練されたローカルモデルを中央サーバで共有する,フェデレート学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T08:58:41Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Federated Learning and Blockchain-enabled Fog-IoT Platform for Wearables
in Predictive Healthcare [6.045977607688583]
フォグIoTネットワーク内で,フェデレーション学習とプライベートブロックチェーン技術を用いたプラットフォームを提案する。
これらの技術は、ネットワーク内のデータを保護するプライバシー保護機能を備えている。
実験結果によると、導入した実装は患者のプライバシと予測サービスの整合性を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-01-11T15:16:44Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Data Heterogeneity-Robust Federated Learning via Group Client Selection
in Industrial IoT [57.67687126339891]
FedGSは5Gのエンパワーメント産業のための階層的なクラウド・エッジ・エンドのFLフレームワークである。
自然にクラスタ化されたファクトリデバイスを利用することで、FedGSは勾配ベースのバイナリ置換アルゴリズムを使用する。
実験によると、FedGSは精度を3.5%改善し、トレーニングラウンドを平均59%削減している。
論文 参考訳(メタデータ) (2022-02-03T10:48:17Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - FedHome: Cloud-Edge based Personalized Federated Learning for In-Home
Health Monitoring [39.36361256682276]
在宅健康モニタリングは、世界中の高齢層に大きな注目を集めている。
既存の家庭内健康モニタリングのアプローチは、ユーザのデータプライバシに十分な注意を払わない。
FedHomeは、家庭内健康モニタリングのための新しいクラウドエッジのフェデレーション学習フレームワークです。
論文 参考訳(メタデータ) (2020-12-14T12:04:44Z) - Blockchain-based Smart-IoT Trust Zone Measurement Architecture [1.5749416770494706]
IoT(Internet of Things)は大きな注目を集め、私たちの環境の中心的な側面になっています。
本稿では,外部ネットワークへの信頼感を提供するIoTセットアップにおける行動モニタを提案する。
さらに、ブロックチェーン上のアプリケーションやデータに対してセキュアな実行環境を提供するために、Trusted Execution Technology(Intel SGX)も組み込んでいます。
論文 参考訳(メタデータ) (2020-01-08T03:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。