論文の概要: Self-Supervised learning for Neural Architecture Search (NAS)
- arxiv url: http://arxiv.org/abs/2304.01023v1
- Date: Mon, 3 Apr 2023 14:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 15:04:15.356487
- Title: Self-Supervised learning for Neural Architecture Search (NAS)
- Title(参考訳): ニューラルネットワーク探索のための自己教師付き学習
- Authors: Samuel Ducros
- Abstract要約: このインターンシップは、ラベルのないデータを使用する革新的な方法を提案することである。
これにより、AIは自動的に正しい結果を予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this internship is to propose an innovative method that uses
unlabelled data, i.e. data that will allow the AI to automatically learn to
predict the correct outcome. To reach this stage, the steps to be followed can
be defined as follows: (1) consult the state of the art and position ourself
against it, (2) come up with ideas for development paths, (3) implement these
ideas, (4) and finally test them to position ourself against the state of the
art, and then start the sequence again. During my internship, this sequence was
done several times and therefore gives the tracks explored during the
internship.
- Abstract(参考訳): このインターンシップの目的は、不正なデータ、すなわちAIが自動的に正しい結果を予測することができるデータを使用する革新的な方法を提案することである。
この段階にたどり着くためには,(1) 技術の状況を調べ,それに対して自分自身を配置すること,(2) 開発経路のアイデアを思いついたこと,(3) それらのアイデアを実践すること,(4) , そして最後に, 技術の状況に対して私たち自身を配置すること, そして再びシーケンスを開始すること,といった手順を踏襲する。
インターンシップの間、このシーケンスは何度か行われ、インターンシップ中に探索されたトラックを提供する。
関連論文リスト
- Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
連続学習における一般的な問題は、最新のタスクに対する分類層のバイアスである。
アダプティブ・リテンション・アンド・コレクション (ARC) のアプローチを例に挙げる。
ARCはCIFAR-100とImagenet-Rのデータセットで平均2.7%と2.6%のパフォーマンス向上を達成した。
論文 参考訳(メタデータ) (2024-05-23T08:43:09Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Towards Automated Process Planning and Mining [77.34726150561087]
我々は、AIとBPM分野の研究者が共同で働く研究プロジェクトについて紹介する。
プロセスモデルを自動的に導出するための総合的な研究課題、研究の関連分野、および総合的な研究枠組みについて論じる。
論文 参考訳(メタデータ) (2022-08-18T16:41:22Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - AANG: Automating Auxiliary Learning [110.36191309793135]
補助目的の集合を自動生成する手法を提案する。
我々は、新しい統合分類体系の中で既存の目的を分解し、それらの関係を識別し、発見された構造に基づいて新しい目的を創出することで、これを実現する。
これにより、生成された目的物の空間を探索し、指定されたエンドタスクに最も有用なものを見つけるための、原理的かつ効率的なアルゴリズムが導かれる。
論文 参考訳(メタデータ) (2022-05-27T16:32:28Z) - BEyond observation: an approach for ObjectNav [0.0]
我々は,センサデータ融合と最先端機械学習アルゴリズムが,ビジュアルセマンティックナビゲーション(Visual Semantic Navigation)と呼ばれるEmbodied Artificial Intelligence (E-AI)タスクをどのように実行できるかを探索する。
このタスクは、エゴセントリックな視覚的観察を用いて、環境に関する事前の知識なしに、対象のセマンティッククラスに属するオブジェクトに到達するための自律ナビゲーションで構成されている。
提案手法は,ミニバル相とテストスタンダード相のHabitat Challenge 2021 ObjectNavで4位に達した。
論文 参考訳(メタデータ) (2021-06-21T19:27:16Z) - Self-Imitation Learning by Planning [3.996275177789895]
模擬学習(IL)により、熟練の知識を伝達することで、ロボットがスキルを素早く習得できます。
長期移動計画タスクでは、ILおよびRLメソッドのデプロイにおける課題は、大規模で広範囲に分散したデータの生成と収集方法である。
本研究では,現在の方針から訪問状態の計画により,実演データを自動収集する自己模倣学習(silp)を提案する。
SILPは、早期強化学習の段階で正常に訪問された状態がグラフ検索ベースのモーションプランナーの衝突のないノードであることに触発されます。
論文 参考訳(メタデータ) (2021-03-25T13:28:38Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z) - DREAM Architecture: a Developmental Approach to Open-Ended Learning in
Robotics [44.62475518267084]
我々は、この再記述プロセス段階を段階的にブートストラップし、適切なモチベーションを持った新しい状態表現を構築し、獲得した知識をドメインやタスク、さらにはロボット間で伝達するための発達的認知アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-05-13T09:29:40Z) - The Past and Present of Imitation Learning: A Citation Chain Study [1.5011696375260442]
模擬学習を行うための様々な方法の開発について検討する。
私は、印象的なImitation Learning手法を開発するために、連続して構築される4つの目印となる論文の調査に焦点を合わせます。
論文 参考訳(メタデータ) (2020-01-08T00:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。