Process Channels: A New Layer for Process Enactment Based on Blockchain State Channels
- URL: http://arxiv.org/abs/2304.01107v3
- Date: Wed, 26 Mar 2025 22:44:30 GMT
- Title: Process Channels: A New Layer for Process Enactment Based on Blockchain State Channels
- Authors: Fabian Stiehle, Ingo Weber,
- Abstract summary: We propose to change the foundation of blockchain-based business process execution, from on-chain smart contracts to state channels.<n>State channels allow conducting most transactions off-chain while mostly retaining the core security properties offered by blockchain.<n>Our proposal, process channels, is a model-driven approach to enacting processes on state channels.
- Score: 0.09208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For the enactment of inter-organizational business processes, blockchain can guarantee the enforcement of process models and the integrity of execution traces. However, existing solutions come with downsides regarding throughput scalability, latency, and suboptimal tradeoffs between confidentiality and transparency. To address these issues, we propose to change the foundation of blockchain-based business process execution: from on-chain smart contracts to state channels, an overlay network on top of a blockchain. State channels allow conducting most transactions off-chain while mostly retaining the core security properties offered by blockchain. Our proposal, process channels, is a model-driven approach to enacting processes on state channels, with the aim to retain the desired blockchain properties while reducing the on-chain footprint as much as possible. We here focus on the principled approach of state channels as a platform, to enable manifold future optimizations in various directions, like latency and confidentiality. We implement our approach prototypical and evaluate it both qualitatively (w.r.t. assumptions and guarantees) and quantitatively (w.r.t. correctness and gas cost). In short, while the initial deployment effort is higher with state channels, it typically pays off after a few process instances; and as long as the new assumptions hold, so do the guarantees.
Related papers
- Zaptos: Towards Optimal Blockchain Latency [52.30047458198369]
We introduce Zaptos, a parallel pipelined architecture designed to minimize end-to-end latency.<n>Zaptos achieves a throughput of 20,000 transactions per second with sub-second latency.
arXiv Detail & Related papers (2025-01-18T00:22:22Z) - BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - Generative Blockchain: Transforming Blockchain from Transaction Recording to Transaction Generation through Proof-of-Merit [5.801684954657074]
generative blockchain aims to transform conventional blockchain technology by combining transaction generation and recording.
Central to our design is a novel consensus mechanism, Proof-of-Merit (PoM)
We demonstrate PoM on a ride service on-demand platform, where the task of solving complex transaction-generating problems is delegated to a pool of independent problem solvers.
arXiv Detail & Related papers (2024-08-23T20:51:10Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - The Cost of Executing Business Processes on Next-Generation Blockchains: The Case of Algorand [0.09208007322096533]
We study a system, Algorand, from a process execution perspective.
Algorand promises low transaction fees and fast finality.
We compare the cost of executing processes on Algorand to previous work as well as traditional cloud computing.
arXiv Detail & Related papers (2024-07-09T09:58:11Z) - RollupTheCrowd: Leveraging ZkRollups for a Scalable and Privacy-Preserving Reputation-based Crowdsourcing Platform [2.90114256542208]
Current blockchain-based reputation solutions for crowdsourcing fail to tackle the challenge of ensuring both efficiency and privacy without compromising the scalability of the blockchain.
This paper introduces RollupTheCrowd, a novel blockchain-powered crowdsourcing framework that leverages zkRollups to enhance system scalability while protecting user privacy.
Our framework includes an effective and privacy-preserving reputation model that gauges workers' trustworthiness by assessing their crowdsourcing interactions.
arXiv Detail & Related papers (2024-07-02T12:51:32Z) - Maximizing Blockchain Performance: Mitigating Conflicting Transactions through Parallelism and Dependency Management [0.18641315013048293]
"Conflicting transactions" contribute to high network latency and transaction failures.
We present a novel scheme that integrates transaction parallelism and an intelligent dependency manager.
Results show that our scheme outperforms both existing parallel and non-parallel Hyperledger Fabric blockchain networks.
arXiv Detail & Related papers (2024-07-01T16:17:33Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - chainBoost: A Secure Performance Booster for Blockchain-based Resource Markets [0.6383640665055312]
We propose chainBoost, a secure performance booster for decentralized resource markets.
It expedites service related operations, reduces the blockchain size, and supports flexible service-payment exchange modalities at low overhead.
We implement a proof-of-concept prototype for a distributed file storage market as a use case.
arXiv Detail & Related papers (2024-02-25T14:19:41Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.