論文の概要: DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis
- arxiv url: http://arxiv.org/abs/2304.01219v1
- Date: Fri, 31 Mar 2023 09:38:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 17:12:21.700053
- Title: DoE2Vec: Deep-learning Based Features for Exploratory Landscape Analysis
- Title(参考訳): DoE2Vec:探索的景観分析のためのディープラーニングベースの機能
- Authors: Bas van Stein, Fu Xing Long, Moritz Frenzel, Peter Krause, Markus
Gitterle, Thomas B\"ack
- Abstract要約: 本研究では,地形特性を最適化するための変分オートエンコーダ(VAE)に基づく手法であるDoE2Vecを提案する。
古典的な探索的景観解析(ELA)法とは異なり,本手法では特徴工学は必要としない。
検証のために、潜伏再構成の品質を検査し、異なる実験を用いて潜伏表現を解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose DoE2Vec, a variational autoencoder (VAE)-based methodology to
learn optimization landscape characteristics for downstream meta-learning
tasks, e.g., automated selection of optimization algorithms. Principally, using
large training data sets generated with a random function generator, DoE2Vec
self-learns an informative latent representation for any design of experiments
(DoE). Unlike the classical exploratory landscape analysis (ELA) method, our
approach does not require any feature engineering and is easily applicable for
high dimensional search spaces. For validation, we inspect the quality of
latent reconstructions and analyze the latent representations using different
experiments. The latent representations not only show promising potentials in
identifying similar (cheap-to-evaluate) surrogate functions, but also can
significantly boost performances when being used complementary to the classical
ELA features in classification tasks.
- Abstract(参考訳): 本研究では,変分オートエンコーダ(VAE)に基づく手法であるDoE2Vecを提案し,最適化アルゴリズムの自動選択など,下流メタ学習タスクのランドスケープ特性を学習する。
主に、ランダム関数生成器で生成された大きなトレーニングデータセットを使用して、doe2vecは実験設計(doe)のための情報的潜在表現を自己学習する。
古典的探索的ランドスケープ解析 (ela) 法とは異なり, 本手法は特徴工学を必要とせず, 高次元探索空間にも容易に適用できる。
検証のために, 潜在再構築の品質を検査し, 異なる実験を用いて潜在表現の分析を行う。
潜在表現は、類似する (cheap-to-evaluate) サーロゲート関数を識別する有望な可能性を示すだけでなく、分類タスクで古典elaの特徴を補完するときに性能を著しく向上させる。
関連論文リスト
- Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - Class-Specific Variational Auto-Encoder for Content-Based Image
Retrieval [95.42181254494287]
本稿では,変分自動エンコーダ(VAE)に対する正規化損失を提案する。
その結果、モデルは、関心のクラスに属するデータを他のあらゆる可能性から識別することを学ぶ。
実験の結果,提案手法はドメイン内およびドメイン外検索における競合よりも優れていた。
論文 参考訳(メタデータ) (2023-04-23T19:51:25Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Synthetic Sample Selection for Generalized Zero-Shot Learning [4.264192013842096]
Generalized Zero-Shot Learning (GZSL) はコンピュータビジョンにおいて重要な研究領域となっている。
本稿では,強化学習を用いた合成特徴選択のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T03:22:43Z) - Self-Optimizing Feature Transformation [33.458785763961004]
特徴変換は、既存の特徴を数学的に変換することで、優れた表現(特徴)空間を抽出することを目的としている。
現在の研究は、ドメイン知識に基づく特徴工学や学習潜在表現に焦点を当てている。
特徴変換のための自己最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-16T16:50:41Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - A Collection of Deep Learning-based Feature-Free Approaches for
Characterizing Single-Objective Continuous Fitness Landscapes [0.0]
ランドスケープの洞察は、問題を理解するだけでなく、ベンチマークセットの多様性と構成を評価するためにも重要である。
本研究では、最適化ランドスケープを特徴付ける様々なアプローチのコレクションを提供する。
我々は、Deep Learningの助けを借りて、BBOBテストベッド上で考案した手法を実証し、検証し、予測する。
論文 参考訳(メタデータ) (2022-04-12T12:46:31Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - AEFE: Automatic Embedded Feature Engineering for Categorical Features [4.310748698480341]
本稿では,カスタムパラダイム機能構築や複数機能選択など,さまざまなコンポーネントから構成されるカテゴリ機能を表現するための自動機能エンジニアリングフレームワークを提案する。
いくつかの典型的なeコマースデータセットで実施された実験は、我々の手法が古典的な機械学習モデルや最先端のディープラーニングモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2021-10-19T07:22:59Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Towards Explainable Exploratory Landscape Analysis: Extreme Feature
Selection for Classifying BBOB Functions [4.932130498861987]
驚くほど少数の機能(多くの場合4つ未満)が、98%の精度を達成するのに十分であることを示している。
分類精度は、いくつかのインスタンスがトレーニングやテストに関わっている設定に変換されることを示す。
論文 参考訳(メタデータ) (2021-02-01T10:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。