A greedy approach for increased vehicle utilization in ridesharing
networks
- URL: http://arxiv.org/abs/2304.01225v2
- Date: Mon, 22 Jan 2024 06:31:50 GMT
- Title: A greedy approach for increased vehicle utilization in ridesharing
networks
- Authors: Aqsa Ashraf Makhdomi and Iqra Altaf Gillani
- Abstract summary: ridesharing platforms have become a prominent mode of transportation for the residents of urban areas.
We propose a k-hop-based sliding window approximation algorithm that reduces the search space from entire road network to a window.
We evaluate our proposed model on real-world datasets and experimental results demonstrate superior performance by our proposed model.
- Score: 0.3480973072524161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, ridesharing platforms have become a prominent mode of
transportation for the residents of urban areas. As a fundamental problem,
route recommendation for these platforms is vital for their sustenance. The
works done in this direction have recommended routes with higher passenger
demand. Despite the existing works, statistics have suggested that these
services cause increased greenhouse emissions compared to private vehicles as
they roam around in search of riders. This analysis provides finer details
regarding the functionality of ridesharing systems and it reveals that in the
face of their boom, they have not utilized the vehicle capacity efficiently. We
propose to overcome the above limitations and recommend routes that will fetch
multiple passengers simultaneously which will result in increased vehicle
utilization and thereby decrease the effect of these systems on the
environment. As route recommendation is NP-hard, we propose a k-hop-based
sliding window approximation algorithm that reduces the search space from
entire road network to a window. We further demonstrate that maximizing
expected demand is submodular and greedy algorithms can be used to optimize our
objective function within a window. We evaluate our proposed model on
real-world datasets and experimental results demonstrate superior performance
by our proposed model.
Related papers
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
This paper introduces GARLIC: a framework of GPT-Augmented Reinforcement Learning with Intelligent Control for vehicle dispatching.
arXiv Detail & Related papers (2024-08-19T08:23:38Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
This paper presents MSight, a cutting-edge roadside perception system specifically designed for automated vehicles.
MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction.
Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency.
arXiv Detail & Related papers (2023-10-08T21:32:30Z) - A Machine-Learned Ranking Algorithm for Dynamic and Personalised Car
Pooling Services [7.476901945542385]
We propose GoTogether, a recommender system for car pooling services.
GoTogether builds the list of recommended rides in order to maximise the success rate of the offered matches.
To test the performance of our scheme we use real data from Twitter and Foursquare sources.
arXiv Detail & Related papers (2023-07-06T09:25:38Z) - End-to-end Autonomous Driving: Challenges and Frontiers [45.391430626264764]
We provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving.
We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others.
We discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework.
arXiv Detail & Related papers (2023-06-29T14:17:24Z) - Large-scale Online Ridesharing: The Effect of Assignment Optimality on
System Performance [13.010768187625352]
Mobility-on-demand (MoD) systems consist of a fleet of shared vehicles that can be hailed for one-way point-to-point trips.
The total distance driven by the vehicles and the fleet size can be reduced by employing ridesharing, i.e., by assigning multiple passengers to one vehicle.
We show how the VGA method, a recently proposed systematic method for ridesharing, can be used to compute the optimal passenger-vehicle assignments in an MoD system.
arXiv Detail & Related papers (2023-04-07T12:07:06Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Urban traffic dynamic rerouting framework: A DRL-based model with
fog-cloud architecture [0.7046417074932257]
This study proposes a two-stage model that combines GAQ (Graph Attention Network - Deep Q Learning) and EBkSP (Entropy Based k Shortest Path)
First, GAQ analyzes the traffic conditions on each road and for each fog area, and then assigns a road index based on the information attention from both local and neighboring areas.
Second, EBkSP assigns the route for each vehicle based on the vehicle priority and route popularity.
arXiv Detail & Related papers (2021-10-11T18:15:44Z) - Incentivizing Efficient Equilibria in Traffic Networks with Mixed
Autonomy [17.513581783749707]
Vehicle platooning can potentially reduce traffic congestion by increasing road capacity via vehicle platooning.
We consider a network of parallel roads with two modes of transportation: (i) human drivers, who will choose the quickest route available to them, and (ii) a ride hailing service, which provides an array of autonomous vehicle route options, each with different prices, to users.
We formalize a model of vehicle flow in mixed autonomy and a model of how autonomous service users make choices between routes with different prices and latencies.
arXiv Detail & Related papers (2021-05-06T03:01:46Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
We present a dynamic, demand aware, and pricing-based vehicle-passenger matching and route planning framework.
Our framework is validated using the New York City Taxi dataset.
Experimental results show the effectiveness of our approach in real-time and large scale settings.
arXiv Detail & Related papers (2020-10-05T03:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.