論文の概要: A differentiable programming framework for spin models
- arxiv url: http://arxiv.org/abs/2304.01772v2
- Date: Wed, 22 May 2024 10:31:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 21:42:06.029436
- Title: A differentiable programming framework for spin models
- Title(参考訳): スピンモデルのための微分可能プログラミングフレームワーク
- Authors: Tiago de Souza Farias, Vitor Vaz Schultz, José Carlos Merino Mombach, Jonas Maziero,
- Abstract要約: 微分可能プログラミングを用いたスピンモデルシミュレーションのための新しいフレームワークを提案する。
我々は、Isingモデル、Pottsモデル、Cellular Pottsモデルという3つの異なるスピンシステムに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework for simulating spin models using differentiable programming, an approach that leverages the advancements in machine learning and computational efficiency. We focus on three distinct spin systems: the Ising model, the Potts model, and the Cellular Potts model, demonstrating the practicality and scalability of our framework in modeling these complex systems. Additionally, this framework allows for the optimization of spin models, which can adjust the parameters of a system by a defined objective function. In order to simulate these models, we adapt the Metropolis-Hastings algorithm to a differentiable programming paradigm, employing batched tensors for simulating spin lattices. This adaptation not only facilitates the integration with existing deep learning tools but also significantly enhances computational speed through parallel processing capabilities, as it can be implemented on different hardware architectures, including GPUs and TPUs.
- Abstract(参考訳): 本稿では,機械学習の進歩と計算効率を生かした,微分可能プログラミングを用いたスピンモデルシミュレーションのための新しいフレームワークを提案する。
我々は、Isingモデル、Pottsモデル、Cellular Pottsモデルという3つの異なるスピンシステムに注目し、これらの複雑なシステムのモデリングにおけるフレームワークの実用性とスケーラビリティを実証する。
さらに、このフレームワークはスピンモデルの最適化を可能にし、定義された客観的関数によってシステムのパラメータを調整できる。
これらのモデルをシミュレートするために、スピン格子をシミュレートするバッチテンソルを用いて、Metropolis-Hastingsアルゴリズムを微分可能なプログラミングパラダイムに適応する。
この適応は、既存のディープラーニングツールとの統合を促進するだけでなく、GPUやTPUなど、さまざまなハードウェアアーキテクチャ上で実装できるため、並列処理機能を通じて計算速度を大幅に向上させる。
関連論文リスト
- Learnable & Interpretable Model Combination in Dynamic Systems Modeling [0.0]
我々は、通常、どのモデルが組み合わされるかについて議論し、様々な混合方程式に基づくモデルを表現することができるモデルインターフェースを提案する。
本稿では,2つの組み合わせモデル間の汎用的な接続を,容易に解釈可能な方法で記述できる新しいワイルドカードトポロジーを提案する。
本稿では、2つのモデル間の異なる接続トポロジを学習し、解釈し、比較する。
論文 参考訳(メタデータ) (2024-06-12T11:17:11Z) - Simulated Overparameterization [35.12611686956487]
SOP(Simulated Overparametrization)と呼ばれる新しいパラダイムを導入する。
SOPは、モデルトレーニングと推論に対するユニークなアプローチを提案し、パラメータのより小さく効率的なサブセットが推論中の実際の計算に使用されるように、非常に多くのパラメータを持つモデルを訓練する。
本稿では,トランスフォーマーモデルを含む主要なアーキテクチャとシームレスに統合する,新しいアーキテクチャ非依存のアルゴリズム"Majority kernels"を提案する。
論文 参考訳(メタデータ) (2024-02-07T17:07:41Z) - Learning Modulated Transformation in GANs [69.95217723100413]
生成逆数ネットワーク(GAN)のジェネレータに、変調変換モジュール(Modulated transformation module, MTM)と呼ばれるプラグアンドプレイモジュールを装備する。
MTMは、可変位置で畳み込み操作を適用可能な潜在符号の制御下で空間オフセットを予測する。
挑戦的なTaiChiデータセット上での人為的な生成に向けて、StyleGAN3のFIDを21.36から13.60に改善し、変調幾何変換の学習の有効性を実証した。
論文 参考訳(メタデータ) (2023-08-29T17:51:22Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z) - A unified software/hardware scalable architecture for brain-inspired
computing based on self-organizing neural models [6.072718806755325]
我々は、Reentrant SOM(ReSOM)モデルにおいて、自己組織化マップ(SOM)とHebbian学習を関連付ける脳誘発ニューラルモデルを開発した。
この研究は、FPGAベースの専用プラットフォーム上でのシミュレーション結果とハードウェア実行の両方を通じて、モデルの分散性とスケーラブル性を実証する。
論文 参考訳(メタデータ) (2022-01-06T22:02:19Z) - Differentiable Spline Approximations [48.10988598845873]
微分プログラミングは機械学習のスコープを大幅に強化した。
標準的な微分可能なプログラミング手法(autodiffなど)は、通常、機械学習モデルが微分可能であることを要求する。
この再設計されたヤコビアンを予測モデルにおける微分可能な「層」の形で活用することで、多様なアプリケーションの性能が向上することを示す。
論文 参考訳(メタデータ) (2021-10-04T16:04:46Z) - A Differentiable Newton Euler Algorithm for Multi-body Model Learning [34.558299591341]
我々はニュートン・オイラー方程式を具現化した計算グラフアーキテクチャを動機付けている。
本稿では、制約のない物理的プラウジブルダイナミクスを実現するために使用される仮想パラメータについて述べる。
従来のホワイトボックスシステム同定手法で要求されるキネマティックパラメータは,データから正確に推定可能であることを示す。
論文 参考訳(メタデータ) (2020-10-19T19:30:33Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。