Data Aware Neural Architecture Search
- URL: http://arxiv.org/abs/2304.01821v1
- Date: Tue, 4 Apr 2023 14:20:36 GMT
- Title: Data Aware Neural Architecture Search
- Authors: Emil Njor, Jan Madsen, Xenofon Fafoutis
- Abstract summary: In Machine Learning, one single metric is not enough to evaluate a NN architecture.
Recent works on NAS for resource constrained systems have investigated various approaches to optimize for multiple metrics.
We name such a system "Data Aware NAS", and we provide experimental evidence of its benefits.
- Score: 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Architecture Search (NAS) is a popular tool for automatically
generating Neural Network (NN) architectures. In early NAS works, these tools
typically optimized NN architectures for a single metric, such as accuracy.
However, in the case of resource constrained Machine Learning, one single
metric is not enough to evaluate a NN architecture. For example, a NN model
achieving a high accuracy is not useful if it does not fit inside the flash
memory of a given system. Therefore, recent works on NAS for resource
constrained systems have investigated various approaches to optimize for
multiple metrics. In this paper, we propose that, on top of these approaches,
it could be beneficial for NAS optimization of resource constrained systems to
also consider input data granularity. We name such a system "Data Aware NAS",
and we provide experimental evidence of its benefits by comparing it to
traditional NAS.
Related papers
- Fair Differentiable Neural Network Architecture Search for Long-Tailed Data with Self-Supervised Learning [0.0]
This paper explores to improve the searching and training performance of NAS on long-tailed datasets.
We first discuss the related works about NAS and the deep learning method for long-tailed datasets.
Then, we focus on an existing work, called SSF-NAS, which integrates the self-supervised learning and fair differentiable NAS.
Finally, we conducted a series of experiments on the CIFAR10-LT dataset for performance evaluation.
arXiv Detail & Related papers (2024-06-19T12:39:02Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
arXiv Detail & Related papers (2022-09-15T12:11:41Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
Neural architecture search (NAS) has shown great success in the automatic design of deep neural networks (DNNs)
Previous work has analyzed the necessity of having ground-truth labels in NAS and inspired broad interest.
We take a further step to question whether real data is necessary for NAS to be effective.
arXiv Detail & Related papers (2022-05-04T16:30:26Z) - U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture
Search [50.33956216274694]
optimizing resource utilization in target platforms is key to achieving high performance during DNN inference.
We propose a novel hardware-aware NAS framework that does not only optimize for task accuracy and inference latency, but also for resource utilization.
We achieve 2.8 - 4x speedup for DNN inference compared to prior hardware-aware NAS methods.
arXiv Detail & Related papers (2022-03-23T13:44:15Z) - PEng4NN: An Accurate Performance Estimation Engine for Efficient
Automated Neural Network Architecture Search [0.0]
Neural network (NN) models are increasingly used in scientific simulations, AI, and other high performance computing fields.
NAS attempts to find well-performing NN models for specialized datsets, where performance is measured by key metrics that capture the NN capabilities.
We propose a performance estimation strategy that reduces the resources for training NNs and increases NAS throughput without jeopardizing accuracy.
arXiv Detail & Related papers (2021-01-11T20:49:55Z) - AdvantageNAS: Efficient Neural Architecture Search with Credit
Assignment [23.988393741948485]
We propose a novel search strategy for one-shot and sparse propagation NAS, namely AdvantageNAS.
AdvantageNAS is a gradient-based approach that improves the search efficiency by introducing credit assignment in gradient estimation for architecture updates.
Experiments on the NAS-Bench-201 and PTB dataset show that AdvantageNAS discovers an architecture with higher performance under a limited time budget.
arXiv Detail & Related papers (2020-12-11T05:45:03Z) - Direct Federated Neural Architecture Search [0.0]
We present an effective approach for direct federated NAS which is hardware agnostic, computationally lightweight, and a one-stage method to search for ready-to-deploy neural network models.
Our results show an order of magnitude reduction in resource consumption while edging out prior art in accuracy.
arXiv Detail & Related papers (2020-10-13T08:11:35Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.