Secure distribution of a certified random quantum key using an entangled
memory qubit
- URL: http://arxiv.org/abs/2111.14523v1
- Date: Mon, 29 Nov 2021 13:31:30 GMT
- Title: Secure distribution of a certified random quantum key using an entangled
memory qubit
- Authors: Pascal Kobel and Ralf A. Berner and Michael K\"ohl
- Abstract summary: We produce a certified random secret key on both endpoints of the quantum communication channel.
We certify the randomness of the key using the min-entropy of the atom-photon state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random generation and confidential distribution of cryptographic keys are
fundamental building blocks of secure communication. Using quantum states in
which the transmitted quantum bit is entangled with a stationary memory quantum
bit allows the secure generation and distribution of keys to be based on
fundamental properties of quantum mechanics. At the same time, the reach of
secure communication networks can be enhanced, in particular, since this
architecture would be compatible with quantum repeaters which are an integral
part for scaling quantum networks. Here, we realize a true single-photon
quantum key distribution protocol (BBM92 protocol) at a second-order temporal
correlation of $ {g^{(2)}(0)=0.00(5)}$ involving an entangled memory qubit
which enables us to produce a certified random secret key on both endpoints of
the quantum communication channel. We certify the randomness of the key using
the min-entropy of the atom-photon state arising from the violation of the CHSH
version of the Bell inequality of $ 2.33(6)$.
Related papers
- Unconditionally secure key distribution without quantum channel [0.76146285961466]
Currently, the quantum scheme stands as the only known method for achieving unconditionally secure key distribution.
We propose another key distribution scheme with unconditional security, named probability key distribution, that promises users between any two distances to generate a fixed and high secret key rate.
Non-local entangled states can be generated, identified and measured in the equivalent virtual protocol and can be used to extract secret keys.
arXiv Detail & Related papers (2024-08-24T15:13:14Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Secured Quantum Identity Authentication Protocol for Quantum Networks [2.3317857568404032]
This paper proposes a quantum identity authentication protocol that protects quantum networks from malicious entanglements.
Unlike the existing protocols, the proposed quantum authentication protocol does not require periodic refreshments of the shared secret keys.
arXiv Detail & Related papers (2023-12-10T05:36:49Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
We present a quantum memory engineered to meet real-world deployment and scaling challenges.
The memory technology utilizes a warm rubidium vapor as the storage medium, and operates at room temperature.
We demonstrate performance specifications of high-fidelity retrieval (95%) and low operation error $(10-2)$ at a storage time of 160 $mu s$ for single-photon level quantum memory operations.
arXiv Detail & Related papers (2022-05-26T00:33:13Z) - Enhanced Quantum Key Distribution using Hybrid Channels and Natural
Random Numbers [0.0]
We propose three secure key distribution protocols based on a blend of classical and quantum channels.
The proposed protocols exploits the property of quantum computers to generate natural random numbers that can be easily transmitted.
arXiv Detail & Related papers (2020-07-28T15:14:59Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - The QQUIC Transport Protocol: Quantum assisted UDP Internet Connections [11.223026257748657]
Quantum key distribution, in 1984, is a commercialized secure communication method which enables two parties to produce shared random secret key by the nature of quantum mechanics.
We propose QQUIC (Quantum assisted Quick Internet Connections) transport protocol, which modifies the famous QUIC transport protocol by employing the quantum key distribution instead of the original classical algorithms in the key exchanging stage.
arXiv Detail & Related papers (2020-06-01T00:44:58Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.