Leveraging Deep Learning Approaches for Deepfake Detection: A Review
- URL: http://arxiv.org/abs/2304.01908v1
- Date: Tue, 4 Apr 2023 16:04:42 GMT
- Title: Leveraging Deep Learning Approaches for Deepfake Detection: A Review
- Authors: Aniruddha Tiwari, Rushit Dave, Mounika Vanamala
- Abstract summary: Deepfakes are fabricated media generated by AI that are difficult to set apart from the real media.
This paper aims to explore different methodologies with an intention to achieve a cost-effective model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conspicuous progression in the field of machine learning and deep learning
have led the jump of highly realistic fake media, these media oftentimes
referred as deepfakes. Deepfakes are fabricated media which are generated by
sophisticated AI that are at times very difficult to set apart from the real
media. So far, this media can be uploaded to the various social media
platforms, hence advertising it to the world got easy, calling for an
efficacious countermeasure. Thus, one of the optimistic counter steps against
deepfake would be deepfake detection. To undertake this threat, researchers in
the past have created models to detect deepfakes based on ML/DL techniques like
Convolutional Neural Networks. This paper aims to explore different
methodologies with an intention to achieve a cost-effective model with a higher
accuracy with different types of the datasets, which is to address the
generalizability of the dataset.
Related papers
- DF40: Toward Next-Generation Deepfake Detection [62.073997142001424]
existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset and testing them on other prevalent deepfake datasets.
But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world?
We construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques.
arXiv Detail & Related papers (2024-06-19T12:35:02Z) - Undercover Deepfakes: Detecting Fake Segments in Videos [1.2609216345578933]
deepfake generation is a new paradigm of deepfakes which are mostly real videos altered slightly to distort the truth.
In this paper, we present a deepfake detection method that can address this issue by performing deepfake prediction at the frame and video levels.
In particular, the paradigm we address will form a powerful tool for the moderation of deepfakes, where human oversight can be better targeted to the parts of videos suspected of being deepfakes.
arXiv Detail & Related papers (2023-05-11T04:43:10Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhy is a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques.
We present the benchmark on DeePhy dataset using six deepfake detection algorithms.
arXiv Detail & Related papers (2022-09-19T15:30:33Z) - Using Deep Learning to Detecting Deepfakes [0.0]
Deepfakes are videos or images that replace one persons face with another computer-generated face, often a more recognizable person in society.
To combat this online threat, researchers have developed models that are designed to detect deepfakes.
This study looks at various deepfake detection models that use deep learning algorithms to combat this looming threat.
arXiv Detail & Related papers (2022-07-27T17:05:16Z) - Metamorphic Testing-based Adversarial Attack to Fool Deepfake Detectors [2.0649235321315285]
There is a dire need for deepfake detection technology to help spot deepfake media.
Current deepfake detection models are able to achieve outstanding accuracy (>90%)
This study identifies makeup application as an adversarial attack that could fool deepfake detectors.
arXiv Detail & Related papers (2022-04-19T02:24:30Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
Deepfakes have become a critical social problem, and detecting them is of utmost importance.
In this work, we introduce a practical digital forensic tool to detect different types of deepfakes simultaneously.
We develop an autoencoder-based detection model with Residual blocks and sequentially perform transfer learning to detect different types of deepfakes simultaneously.
arXiv Detail & Related papers (2021-05-13T07:31:08Z) - One Detector to Rule Them All: Towards a General Deepfake Attack
Detection Framework [19.762839181838388]
We introduce a Convolutional LSTM-based Residual Network (CLRNet) to better cope with unknown and unseen deepfakes.
Our CLRNet model demonstrated that it generalizes well against high-quality DFW videos by achieving 93.86% detection accuracy.
arXiv Detail & Related papers (2021-05-01T08:02:59Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
Current deepfake detection systems struggle against unseen data.
We employ three different deep Convolutional Neural Network (CNN) models to classify fake and real images extracted from videos.
The proposed technique outperforms state-of-the-art models with 96.5% accuracy.
arXiv Detail & Related papers (2021-02-11T11:28:00Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.