論文の概要: Network Visualization of ChatGPT Research: a study based on term and
keyword co-occurrence network analysis
- arxiv url: http://arxiv.org/abs/2304.01948v1
- Date: Sat, 1 Apr 2023 06:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 13:01:59.887875
- Title: Network Visualization of ChatGPT Research: a study based on term and
keyword co-occurrence network analysis
- Title(参考訳): chatgpt研究のネットワーク可視化 : 用語とキーワードの共起ネットワーク分析に基づく研究
- Authors: Deep Kumar Kirtania
- Abstract要約: 本研究の目的は,ChatGPTの主要な研究領域を用語とキーワードの共起ネットワークマッピング技術を用いて同定することである。
ネットワークビジュアライゼーションのためにLensデータベースから合計577の出版物が検索された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The main objective of this paper is to identify the major research areas of
ChatGPT through term and keyword co-occurrence network mapping techniques. For
conducting the present study, total of 577 publications were retrieved from the
Lens database for the network visualization. The findings of the study showed
that chatgpt occurrence in maximum number of times followed by its related
terms such as artificial intelligence, large language model, gpt, study etc.
This study will be helpful to library and information science as well as
computer or information technology professionals.
- Abstract(参考訳): 本研究の目的は,ChatGPTの主要な研究領域を用語およびキーワード共起ネットワークマッピング技術を用いて同定することである。
本研究では,ネットワーク可視化のために,レンズデータベースから577冊の出版物を検索した。
研究の結果,チャットグプが最大回数で発生し,人工知能,大規模言語モデル,gpt,研究などの関連用語が続いた。
この研究は、図書館や情報科学だけでなく、コンピュータや情報技術の専門家にも役立つだろう。
関連論文リスト
- An approach based on Open Research Knowledge Graph for Knowledge
Acquisition from scientific papers [4.8951183832371]
Open Research Knowledge Graph (ORKG)は、研究論文から抽出されたキーインサイトを整理するコンピュータ支援ツールである。
現在、"食品情報工学"、"知識グラフマッチングへのタブラリデータ"、"クエストアンサーリング"研究問題、"Neuro-symbolic AI"ドメインの文書化に使用されている。
論文 参考訳(メタデータ) (2023-08-23T20:05:42Z) - A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection [98.41798478488101]
時系列分析は、利用可能なデータに暗黙的な情報の富を解放するために不可欠である。
グラフニューラルネットワーク(GNN)の最近の進歩は、時系列解析のためのGNNベースのアプローチの急増につながっている。
この調査は、GNNベースの時系列研究に関する膨大な知識をまとめ、基礎、実践的応用、時系列分析のためのグラフニューラルネットワークの機会を強調します。
論文 参考訳(メタデータ) (2023-07-07T08:05:03Z) - Summary of ChatGPT-Related Research and Perspective Towards the Future
of Large Language Models [40.557611946967086]
本稿では、ChatGPT関連研究(GPT-3.5およびGPT-4)、GPTシリーズの最先端の大規模言語モデル(LLM)、および様々な領域にわたる将来の応用について調査する。
各種アプリケーション領域におけるトレンド分析,ワードクラウド表現,および分布解析を含む,arXivに関する194の関連論文の詳細な分析を行った。
論文 参考訳(メタデータ) (2023-04-04T15:01:06Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Learning with Capsules: A Survey [73.31150426300198]
カプセルネットワークは、オブジェクト中心の表現を学習するための畳み込みニューラルネットワーク(CNN)に代わるアプローチとして提案された。
CNNとは異なり、カプセルネットワークは部分的に階層的な関係を明示的にモデル化するように設計されている。
論文 参考訳(メタデータ) (2022-06-06T15:05:36Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
この研究は、自動サイバーバブル検出に関するKaggleコンペティションで提供されたFormspringデータセットで実施された。
本研究は,サイバブリング検出におけるニューラルネットワークの有効性と分類器性能と特徴密度の相関性を確認した。
論文 参考訳(メタデータ) (2022-06-04T03:17:15Z) - Mapping Research Topics in Software Testing: A Bibliometric Analysis [9.462148324186398]
コワード分析(Co-word analysis)は、用語の共起に基づくテキストマイニング手法である。
我々の分析は、ソフトウェアテスト研究を関連トピックのクラスタにマッピングすることを可能にする。
このマップはまた、Webやモバイルアプリケーションや人工知能に関連するトピックなど、重要度が増しているトピックを示唆している。
論文 参考訳(メタデータ) (2021-09-09T08:06:51Z) - Graph-based Deep Learning for Communication Networks: A Survey [1.1977931648859175]
本稿では,通信ネットワークにおけるグラフベースのディープラーニング手法の適用に焦点を当てた最初の調査である。
フォローアップ調査を追跡するために、パブリックGitHubリポジトリが作成され、関連する論文が継続的に更新される。
論文 参考訳(メタデータ) (2021-06-04T14:59:10Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Generative Adversarial Networks (GANs) in Networking: A Comprehensive
Survey & Evaluation [5.196831100533835]
GAN(Generative Adversarial Networks)は、広く研究された機械学習サブフィールドである。
GANは一般的に合成画像の生成や変換に用いられる。
本稿では、この機械学習の分岐が、コンピュータと通信ネットワークの複数の側面にどのように役立つかを実証する。
論文 参考訳(メタデータ) (2021-05-10T08:28:36Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
この記事では、ディープニューラルネットワークにおける様々なフレームワーク、モデル、アルゴリズムの貢献について要約する。
論文 参考訳(メタデータ) (2020-05-17T11:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。