論文の概要: Uncertainty estimation in Deep Learning for Panoptic segmentation
- arxiv url: http://arxiv.org/abs/2304.02098v2
- Date: Sun, 8 Sep 2024 18:54:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 04:24:51.611179
- Title: Uncertainty estimation in Deep Learning for Panoptic segmentation
- Title(参考訳): 汎視的セグメンテーションのための深層学習における不確かさ推定
- Authors: Michael Smith, Frank Ferrie,
- Abstract要約: 本研究では, アンサンブルに基づく不確実性推定手法が汎視的セグメンテーション領域でどのように利用できるかを示す。
COCO、KITTI-STEP、VIPERデータセットで結果が示されている。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep learning-based computer vision algorithms continue to advance the state of the art, their robustness to real-world data continues to be an issue, making it difficult to bring an algorithm from the lab to the real world. Ensemble-based uncertainty estimation approaches such as Monte Carlo Dropout have been successfully used in many applications in an attempt to address this robustness issue. Unfortunately, it is not always clear if such ensemble-based approaches can be applied to a new problem domain. This is the case with panoptic segmentation, where the structure of the problem and architectures designed to solve it means that unlike image classification or even semantic segmentation, the typical solution of using a mean across samples cannot be directly applied. In this paper, we demonstrate how ensemble-based uncertainty estimation approaches such as Monte Carlo Dropout can be used in the panoptic segmentation domain with no changes to an existing network, providing both improved performance and more importantly a better measure of uncertainty for predictions made by the network. Results are demonstrated quantitatively and qualitatively on the COCO, KITTI-STEP and VIPER datasets.
- Abstract(参考訳): ディープラーニングベースのコンピュータビジョンアルゴリズムが最先端を推し進めている中、実世界のデータに対する堅牢性は問題であり続けており、研究室から現実の世界にアルゴリズムを移すことは困難である。
モンテカルロ・ドロップアウトのようなアンサンブルに基づく不確実性推定手法は、この堅牢性問題に対処するために多くのアプリケーションで成功している。
残念ながら、このようなアンサンブルベースのアプローチが新しい問題領域に適用できるかどうかは必ずしも明確ではない。
これは、この問題を解決するために設計された問題やアーキテクチャの構造が、画像分類やセマンティックセグメンテーションとは異なり、サンプル間で平均を使う典型的な解は直接適用できないことを意味する。
本稿では,モンテカルロ・ドロップアウトのようなアンサンブルに基づく不確実性推定手法が,既存のネットワークに変化がなく,性能が向上し,ネットワークによる予測の不確実性も向上することを示す。
結果はCOCO,KITTI-STEP,VIPERデータセットで定量的に定性的に示される。
関連論文リスト
- Malicious Internet Entity Detection Using Local Graph Inference [0.4893345190925178]
大規模ネットワークにおける悪意ある行動の検出は、コンピュータセキュリティにおける機械学習にとって難しい問題である。
現在のサイバーセクト対応アプローチはまだ表現力に制限があるが、他の領域で成功した手法は大量のデータに対してうまくスケールしない。
本研究では,ネットワークエンティティ間の相互作用を異種グラフとしてモデル化するグラフデータから学習する新たな視点を提案する。
論文 参考訳(メタデータ) (2024-08-06T16:35:25Z) - Digging Into Uncertainty-based Pseudo-label for Robust Stereo Matching [39.959000340261625]
本稿では,ロバストなステレオマッチングのための不確実性推定法を提案する。
事前学習されたモデルを新しい領域に適応させるために,不確実性に基づく擬似ラベルを提案する。
本手法は,ロバスト・ビジョン・チャレンジ2020のステレオタスクにおいて,強いクロスドメイン,適応,共同一般化を示す。
論文 参考訳(メタデータ) (2023-07-31T09:11:31Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
残余条件付き相互情報(loo-CMI)の新しい尺度に基づく教師付き学習アルゴリズムのための情報理論の一般化境界を導出する。
他のCMI境界とは対照的に、我々のloo-CMI境界は容易に計算でき、古典的なout-out-out-cross-validationのような他の概念と関連して解釈できる。
ディープラーニングのシナリオにおいて予測された一般化ギャップを評価することにより,境界の質を実証的に検証する。
論文 参考訳(メタデータ) (2022-07-01T17:58:29Z) - Acquisition-invariant brain MRI segmentation with informative
uncertainties [3.46329153611365]
ポストホックな多地点補正法は存在するが、現実のシナリオではしばしば成立しない強い仮定を持つ。
この研究は、セグメンテーションタスクの文脈において、獲得の物理学に堅牢になるようなアルゴリズムを実証している。
提案手法は, ホールドアウトデータセットの完全化, セグメンテーション品質の維持だけでなく, サイト固有のシーケンス選択も考慮しながら, 一般化できることを実証する。
論文 参考訳(メタデータ) (2021-11-07T13:58:04Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
提案手法は,提案不要なインスタンスセグメンテーションモデルにおけるモデル独立不確実性推定値を得るための汎用的な手法である。
本手法は,BBBC010 C. elegansデータセットを用いて評価し,競合性能を示す。
論文 参考訳(メタデータ) (2020-08-24T19:51:48Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
本稿では、介入データを活用可能なニューラルネットワークに基づく理論的基盤化手法を提案する。
提案手法は,様々な環境下での美術品の状態と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-07-03T15:19:17Z) - Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic
Segmentation [63.75774438196315]
Unsupervised Domain adapt (UDA) は、未ラベルのデータのみを持つ新しいターゲットドメインにソースドメインの既存のモデルを適用することを目的としている。
既存のほとんどの手法は、エラーを起こしやすい識別器ネットワークまたは不合理な教師モデルから生じる顕著な負の伝達に悩まされている。
ドメイン間セマンティックセグメンテーションのための不確実性を考慮した整合性正規化手法を提案する。
論文 参考訳(メタデータ) (2020-04-19T15:30:26Z) - Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement
Learning [70.01650994156797]
教育医療などのバッチ強化学習において、観察データからのシーケンシャルな意思決定方針のオフ・アセスメントが必要である。
我々は、ある政策の境界を推定するアプローチを開発する。
より凝縮したデータを集めることで、シャープな境界への収束を証明します。
論文 参考訳(メタデータ) (2020-02-11T16:18:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。