論文の概要: Probabilistic Deep Learning for Instance Segmentation
- arxiv url: http://arxiv.org/abs/2008.10678v2
- Date: Thu, 17 Dec 2020 11:38:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-25 09:15:06.095144
- Title: Probabilistic Deep Learning for Instance Segmentation
- Title(参考訳): インスタンスセグメンテーションのための確率的深層学習
- Authors: Josef Lorenz Rumberger, Lisa Mais, Dagmar Kainmueller
- Abstract要約: 提案手法は,提案不要なインスタンスセグメンテーションモデルにおけるモデル独立不確実性推定値を得るための汎用的な手法である。
本手法は,BBBC010 C. elegansデータセットを用いて評価し,競合性能を示す。
- 参考スコア(独自算出の注目度): 9.62543698736491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic convolutional neural networks, which predict distributions of
predictions instead of point estimates, led to recent advances in many areas of
computer vision, from image reconstruction to semantic segmentation. Besides
state of the art benchmark results, these networks made it possible to quantify
local uncertainties in the predictions. These were used in active learning
frameworks to target the labeling efforts of specialist annotators or to assess
the quality of a prediction in a safety-critical environment. However, for
instance segmentation problems these methods are not frequently used so far. We
seek to close this gap by proposing a generic method to obtain model-inherent
uncertainty estimates within proposal-free instance segmentation models.
Furthermore, we analyze the quality of the uncertainty estimates with a metric
adapted from semantic segmentation. We evaluate our method on the BBBC010 C.\
elegans dataset, where it yields competitive performance while also predicting
uncertainty estimates that carry information about object-level inaccuracies
like false splits and false merges. We perform a simulation to show the
potential use of such uncertainty estimates in guided proofreading.
- Abstract(参考訳): 点推定の代わりに予測の分布を予測する確率論的畳み込みニューラルネットワークは、画像再構成からセマンティックセグメンテーションまで、コンピュータビジョンの多くの領域で近年進歩している。
技術ベンチマークの結果の他に、これらのネットワークは予測における局所的な不確実性を定量化することができた。
これらはアクティブな学習フレームワークで、専門家の注釈のラベリングを目標にしたり、安全クリティカルな環境で予測の質を評価するために使われた。
しかし、例えば、これらの手法は今のところ頻繁には使われていない。
提案手法は,提案不要なインスタンスセグメンテーションモデル内のモデル独立不確実性推定値を求める。
さらに,セマンティクスセグメンテーションから適応した指標を用いて不確実性推定の品質を分析する。
提案手法をBBBC010Cで評価した。
elegansデータセットは、競合パフォーマンスを生み出すと同時に、誤った分割や誤ったマージといったオブジェクトレベルの不正確性に関する情報を運ぶ不確実性推定を予測します。
我々は,このような不確実性推定を指導的証明読解で活用する可能性を示すシミュレーションを行う。
関連論文リスト
- Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Uncertainty Estimation in Instance Segmentation with Star-convex Shapes [4.197316670989004]
ディープニューラルネットワークベースのアルゴリズムは、しばしば不確実な信頼レベルを持つ誤った予測を示す。
本研究は,星形インスタンスの位置で空間的確実性を推定することの課題に対処する。
本研究は、個別の確実性スコアに対する分数的確実性推定を組み合わせることが効果的な戦略であることを示す。
論文 参考訳(メタデータ) (2023-09-19T10:49:33Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Uncertainty Quantification in Deep Neural Networks through Statistical
Inference on Latent Space [0.0]
ネットワークに供給されたデータポイントの潜在空間表現を利用して予測精度を評価するアルゴリズムを開発した。
一般的に使われている手法が大半が過信である合成データセットについて述べる。
対照的に,本手法は,不正確な予測を行うようなアウト・オブ・ディストリビューション・データ・ポイントを検出できるため,アウトレーヤの自動検出に役立てることができる。
論文 参考訳(メタデータ) (2023-05-18T09:52:06Z) - Pixel-wise Gradient Uncertainty for Convolutional Neural Networks
applied to Out-of-Distribution Segmentation [0.43512163406552007]
本稿では,推定時に効率よく計算できる画素単位の損失勾配から不確実点を求める手法を提案する。
本実験は,提案手法が誤った画素分類を識別し,無視可能な計算オーバーヘッドで予測品質を推定する能力を示す。
論文 参考訳(メタデータ) (2023-03-13T08:37:59Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Evaluating Predictive Distributions: Does Bayesian Deep Learning Work? [45.290773422944866]
後続の予測分布は、点推定によって無視される不確実性を定量化する。
本稿では,このような予測を生成するエージェントの系統的評価を行うためのツールである,The Neural Testbedを紹介する。
論文 参考訳(メタデータ) (2021-10-09T18:54:02Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
ディープニューラルネットワークは、しばしば、彼らが知らないことについて無知であり、インフォームド予測を行うときに過信する。
最近のアプローチでは、クラス境界に近いデータサンプルやトレーニング分布の外側から、モデルに高い不確実性を出力するようにトレーニングすることで、不確実性を直接定量化している。
本研究では,アレータ性およびてんかん性不確実性の両方を表現し,決定境界と分布外領域を識別できる新しいニューラルネットワークモデルを構築した。
論文 参考訳(メタデータ) (2020-06-07T15:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。