A step towards the applicability of algorithms based on invariant causal
learning on observational data
- URL: http://arxiv.org/abs/2304.02286v1
- Date: Wed, 5 Apr 2023 08:15:57 GMT
- Title: A step towards the applicability of algorithms based on invariant causal
learning on observational data
- Authors: Borja Guerrero Santillan
- Abstract summary: In this paper, we show how to apply Invariant Causal Prediction (ICP) efficiently integrated with causal discovery methods.
We also show how to apply ICP efficiently integrated with our method for causal discovery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning can benefit from causal discovery for interpretation and
from causal inference for generalization. In this line of research, a few
invariant learning algorithms for out-of-distribution (OOD) generalization have
been proposed by using multiple training environments to find invariant
relationships. Some of them are focused on causal discovery as Invariant Causal
Prediction (ICP), which finds causal parents of a variable of interest, and
some directly provide a causal optimal predictor that generalizes well in OOD
environments as Invariant Risk Minimization (IRM). This group of algorithms
works under the assumption of multiple environments that represent different
interventions in the causal inference context. Those environments are not
normally available when working with observational data and real-world
applications. Here we propose a method to generate them in an efficient way. We
assess the performance of this unsupervised learning problem by implementing
ICP on simulated data. We also show how to apply ICP efficiently integrated
with our method for causal discovery. Finally, we proposed an improved version
of our method in combination with ICP for datasets with multiple covariates
where ICP and other causal discovery methods normally degrade in performance.
Related papers
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
We propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning.
Our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios.
Our method can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.
arXiv Detail & Related papers (2024-05-22T22:22:25Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Rethinking Distribution Shifts: Empirical Analysis and Inductive Modeling for Tabular Data [30.518020409197767]
We build an empirical testbed comprising natural shifts across 5 datasets and 60,000 method configurations.
We find $Y|X$-shifts are most prevalent on our testbed, in stark contrast to the heavy focus on $X$ (co)-shifts in the ML literature.
arXiv Detail & Related papers (2023-07-11T14:25:10Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Effect-Invariant Mechanisms for Policy Generalization [3.701112941066256]
It has been suggested to exploit invariant conditional distributions to learn models that generalize better to unseen environments.
We introduce a relaxation of full invariance called effect-invariance and prove that it is sufficient, under suitable assumptions, for zero-shot policy generalization.
We present empirical results using simulated data and a mobile health intervention dataset to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-19T14:50:24Z) - Decorr: Environment Partitioning for Invariant Learning and OOD Generalization [10.799855921851332]
Invariant learning methods are aimed at identifying a consistent predictor across multiple environments.
When environments aren't inherent in the data, practitioners must define them manually.
This environment partitioning affects invariant learning's efficacy but remains underdiscussed.
In this paper, we suggest partitioning the dataset into several environments by isolating low-correlation data subsets.
arXiv Detail & Related papers (2022-11-18T06:49:35Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
Learning causal structure from observational data is a fundamental challenge in machine learning.
This paper proposes Differentiable Invariant Causal Discovery (DICD) to avoid learning spurious edges and wrong causal directions.
Extensive experiments on synthetic and real-world datasets verify that DICD outperforms state-of-the-art causal discovery methods up to 36% in SHD.
arXiv Detail & Related papers (2022-05-31T09:29:07Z) - Kernelized Heterogeneous Risk Minimization [25.5458915855661]
We propose a Kernelized Heterogeneous Risk Minimization (KerHRM) algorithm, which achieves both the latent exploration and invariant learning in kernel space.
We theoretically justify our algorithm and empirically validate the effectiveness of our algorithm with extensive experiments.
arXiv Detail & Related papers (2021-10-24T12:26:50Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challenges.
We propose a method of invariant prediction to learn model-irrelevance state abstractions (MISA) that generalize to novel observations in the multi-environment setting.
arXiv Detail & Related papers (2020-03-12T21:03:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.