Rethinking Distribution Shifts: Empirical Analysis and Inductive Modeling for Tabular Data
- URL: http://arxiv.org/abs/2307.05284v4
- Date: Wed, 13 Nov 2024 15:53:37 GMT
- Title: Rethinking Distribution Shifts: Empirical Analysis and Inductive Modeling for Tabular Data
- Authors: Jiashuo Liu, Tianyu Wang, Peng Cui, Hongseok Namkoong,
- Abstract summary: We build an empirical testbed comprising natural shifts across 5 datasets and 60,000 method configurations.
We find $Y|X$-shifts are most prevalent on our testbed, in stark contrast to the heavy focus on $X$ (co)-shifts in the ML literature.
- Score: 30.518020409197767
- License:
- Abstract: Different distribution shifts require different interventions, and algorithms must be grounded in the specific shifts they address. However, methodological development for robust algorithms typically relies on structural assumptions that lack empirical validation. Advocating for an empirically grounded data-driven approach to research, we build an empirical testbed comprising natural shifts across 5 tabular datasets and 60,000 method configurations encompassing imbalanced learning and distributionally robust optimization (DRO) methods. We find $Y|X$-shifts are most prevalent on our testbed, in stark contrast to the heavy focus on $X$ (covariate)-shifts in the ML literature. The performance of robust algorithms varies significantly over shift types, and is no better than that of vanilla methods. To understand why, we conduct an in-depth empirical analysis of DRO methods and find that although often neglected by researchers, implementation details -- such as the choice of underlying model class (e.g., XGBoost) and hyperparameter selection -- have a bigger impact on performance than the ambiguity set or its radius. To further bridge that gap between methodological research and practice, we design case studies that illustrate how such a data-driven, inductive understanding of distribution shifts can enhance both data-centric and algorithmic interventions.
Related papers
- Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB)
OB is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications.
OB is model-agnostic, making it applicable to a wide range of machine learning models and tasks.
arXiv Detail & Related papers (2024-03-26T16:40:08Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
We introduce the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets.
We also introduce a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution.
arXiv Detail & Related papers (2023-10-25T05:24:23Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - A Fine-Grained Analysis on Distribution Shift [24.084676204709723]
We introduce a framework that enables fine-grained analysis of various distribution shifts.
We evaluate 19 distinct methods grouped into five categories across both synthetic and real-world datasets.
Our framework can be easily extended to include new methods, shifts, and datasets.
arXiv Detail & Related papers (2021-10-21T17:57:08Z) - Non-stationary Gaussian process discriminant analysis with variable
selection for high-dimensional functional data [0.0]
High-dimensional classification and feature selection are ubiquitous with the recent advancement in data acquisition technology.
These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately.
We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework.
arXiv Detail & Related papers (2021-09-29T03:35:49Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Domain adaptation under structural causal models [2.627046865670577]
Domain adaptation (DA) arises when the source data used to train a model is different from the target data used to test the model.
Recent advances in DA have mainly been application-driven.
We propose a theoretical framework via structural causal models that enables analysis and comparison of the prediction performance of DA methods.
arXiv Detail & Related papers (2020-10-29T17:09:34Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.