論文の概要: Semantic Validation in Structure from Motion
- arxiv url: http://arxiv.org/abs/2304.02420v1
- Date: Wed, 5 Apr 2023 12:58:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 12:33:44.658522
- Title: Semantic Validation in Structure from Motion
- Title(参考訳): 動きからの構造における意味的検証
- Authors: Joseph Rowell
- Abstract要約: Structure from Motion (SfM) は、一連の投影計測からシーンの3次元構造を復元する過程である。
SfMは、特徴検出とマッチング、カメラモーション推定、および3D構造の回復の3つの主要なステップから構成される。
このプロジェクトは3次元SfMモデルの検証を改善するための新しい方法を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Structure from Motion (SfM) challenge in computer vision is the process
of recovering the 3D structure of a scene from a series of projective
measurements that are calculated from a collection of 2D images, taken from
different perspectives. SfM consists of three main steps; feature detection and
matching, camera motion estimation, and recovery of 3D structure from estimated
intrinsic and extrinsic parameters and features.
A problem encountered in SfM is that scenes lacking texture or with
repetitive features can cause erroneous feature matching between frames.
Semantic segmentation offers a route to validate and correct SfM models by
labelling pixels in the input images with the use of a deep convolutional
neural network. The semantic and geometric properties associated with classes
in the scene can be taken advantage of to apply prior constraints to each class
of object. The SfM pipeline COLMAP and semantic segmentation pipeline DeepLab
were used. This, along with planar reconstruction of the dense model, were used
to determine erroneous points that may be occluded from the calculated camera
position, given the semantic label, and thus prior constraint of the
reconstructed plane. Herein, semantic segmentation is integrated into SfM to
apply priors on the 3D point cloud, given the object detection in the 2D input
images. Additionally, the semantic labels of matched keypoints are compared and
inconsistent semantically labelled points discarded. Furthermore, semantic
labels on input images are used for the removal of objects associated with
motion in the output SfM models. The proposed approach is evaluated on a
data-set of 1102 images of a repetitive architecture scene. This project offers
a novel method for improved validation of 3D SfM models.
- Abstract(参考訳): コンピュータビジョンにおけるStructure from Motion (SfM)チャレンジは、異なる視点から撮影された2D画像の集合から計算された一連の投影的計測からシーンの3D構造を復元するプロセスである。
SfMは,特徴検出とマッチング,カメラモーション推定,推定内在パラメータと外在パラメータから3次元構造を復元する3つの主要なステップから構成される。
SfMの問題点は、テクスチャを欠いたシーンや反復的な特徴がフレーム間の誤った特徴マッチングを引き起こすことである。
セマンティックセグメンテーションは、深い畳み込みニューラルネットワークを用いて入力画像のピクセルをラベル付けすることで、SfMモデルの検証と修正を行う手段を提供する。
シーン内のクラスに関連する意味的および幾何学的性質を利用して、各オブジェクトのクラスに事前の制約を適用することができる。
SfMパイプラインCOLMAPとセマンティックセグメンテーションパイプラインDeepLabが使用された。
これは、高密度モデルの平面再構成とともに、計算されたカメラ位置から隠蔽される誤点、セマンティックラベル、したがって再構成された平面の事前制約を決定するために使用された。
ここで、セマンティックセグメンテーションはSfMに統合され、2D入力画像のオブジェクト検出を前提として、3Dポイントクラウドに事前適用される。
さらに、マッチしたキーポイントのセマンティックラベルを比較し、一貫性のないセマンティックラベル付きポイントを破棄する。
さらに、入力画像上のセマンティックラベルを用いて、出力SfMモデルにおける動きに関連するオブジェクトを除去する。
提案手法は,繰り返しアーキテクチャシーンの1102画像のデータセットを用いて評価する。
このプロジェクトは3次元SfMモデルの検証を改善するための新しい方法を提供する。
関連論文リスト
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
大空間モデル(LSM)は、RGB画像を直接意味的放射場に処理する。
LSMは、単一のフィードフォワード操作における幾何学、外観、意味を同時に推定する。
新しい視点で言語と対話することで、多目的ラベルマップを生成することができる。
論文 参考訳(メタデータ) (2024-10-24T17:54:42Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
本稿では,このような特徴変換をモデル化するために,深度などの幾何学的情報を活用することに焦点を当てる。
まず2次元画像の特徴を,各ビューの画素ごとのパラメトリック深度分布を予測して,エゴ車に定義された3次元空間に引き上げる。
次に、深度からBEVフレームへの3次元空間占有度に基づいて、3次元特徴体積を集約する。
論文 参考訳(メタデータ) (2023-07-09T06:07:22Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
Using Joint 2D-3D Learning [20.81202315793742]
本稿では,視覚的オドメトリーアルゴリズムによって保持される各カメラにおける局所的メートル法-セマンティックメッシュを再構築する2次元3次元学習手法を提案する。
メッシュはグローバル環境モデルに組み立てて、オンライン操作中の地形のトポロジとセマンティクスをキャプチャすることができる。
論文 参考訳(メタデータ) (2022-04-23T05:18:39Z) - 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow [61.62796058294777]
単一の2D画像から3D形状を再構築することは難しい作業だ。
従来の手法の多くは3次元再構成作業における意味的属性の抽出に苦慮している。
本稿では,3DAttriFlowを用いて,入力画像の異なる意味レベルから意味的属性を抽出する手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T02:03:31Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
モノクロ画像から3次元物体を再構成する深層強化学習手法を提案する。
提案手法は, 視覚的品質, 再構成精度, 計算時間において, 最先端技術よりも優れる。
論文 参考訳(メタデータ) (2021-09-24T09:44:22Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。