Semantic Validation in Structure from Motion
- URL: http://arxiv.org/abs/2304.02420v1
- Date: Wed, 5 Apr 2023 12:58:59 GMT
- Title: Semantic Validation in Structure from Motion
- Authors: Joseph Rowell
- Abstract summary: Structure from Motion (SfM) is the process of recovering the 3D structure of a scene from a series of projective measurements.
SfM consists of three main steps; feature detection and matching, camera motion estimation, and recovery of 3D structure.
This project offers a novel method for improved validation of 3D SfM models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Structure from Motion (SfM) challenge in computer vision is the process
of recovering the 3D structure of a scene from a series of projective
measurements that are calculated from a collection of 2D images, taken from
different perspectives. SfM consists of three main steps; feature detection and
matching, camera motion estimation, and recovery of 3D structure from estimated
intrinsic and extrinsic parameters and features.
A problem encountered in SfM is that scenes lacking texture or with
repetitive features can cause erroneous feature matching between frames.
Semantic segmentation offers a route to validate and correct SfM models by
labelling pixels in the input images with the use of a deep convolutional
neural network. The semantic and geometric properties associated with classes
in the scene can be taken advantage of to apply prior constraints to each class
of object. The SfM pipeline COLMAP and semantic segmentation pipeline DeepLab
were used. This, along with planar reconstruction of the dense model, were used
to determine erroneous points that may be occluded from the calculated camera
position, given the semantic label, and thus prior constraint of the
reconstructed plane. Herein, semantic segmentation is integrated into SfM to
apply priors on the 3D point cloud, given the object detection in the 2D input
images. Additionally, the semantic labels of matched keypoints are compared and
inconsistent semantically labelled points discarded. Furthermore, semantic
labels on input images are used for the removal of objects associated with
motion in the output SfM models. The proposed approach is evaluated on a
data-set of 1102 images of a repetitive architecture scene. This project offers
a novel method for improved validation of 3D SfM models.
Related papers
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - Parametric Depth Based Feature Representation Learning for Object
Detection and Segmentation in Bird's Eye View [44.78243406441798]
This paper focuses on leveraging geometry information, such as depth, to model such feature transformation.
We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view.
We then aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame.
arXiv Detail & Related papers (2023-07-09T06:07:22Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
Using Joint 2D-3D Learning [20.81202315793742]
This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera maintained by a visual odometry algorithm.
The mesh can be assembled into a global environment model to capture the terrain topology and semantics during online operation.
arXiv Detail & Related papers (2022-04-23T05:18:39Z) - 3D Shape Reconstruction from 2D Images with Disentangled Attribute Flow [61.62796058294777]
Reconstructing 3D shape from a single 2D image is a challenging task.
Most of the previous methods still struggle to extract semantic attributes for 3D reconstruction task.
We propose 3DAttriFlow to disentangle and extract semantic attributes through different semantic levels in the input images.
arXiv Detail & Related papers (2022-03-29T02:03:31Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.