Learning capability of parametrized quantum circuits
- URL: http://arxiv.org/abs/2209.10345v2
- Date: Wed, 13 Mar 2024 21:54:26 GMT
- Title: Learning capability of parametrized quantum circuits
- Authors: Dirk Heimann, Gunnar Schönhoff, Elie Mounzer, Hans Hohenfeld, Frank Kirchner,
- Abstract summary: Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices.
In this paper, we build upon the work by Schuld et al. and compare popular ans"atze for PQCs through the new measure of learning capability.
We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability.
- Score: 2.51657752676152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices. However, differences in the performance of certain VQA architectures are often unclear since established best practices as well as detailed studies are missing. In this paper, we build upon the work by Schuld et al. and Vidal et al. and compare popular ans\"atze for PQCs through the new measure of learning capability. We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability. Comparing the results for the different PQC architectures, we can provide guidelines for designing efficient PQCs.
Related papers
- Potential and limitations of random Fourier features for dequantizing
quantum machine learning [0.5277756703318045]
Quantum machine learning is arguably one of the most explored applications of near-term quantum devices.
Much focus has been put on notions of variational quantum machine learning where parameterized quantum circuits (PQCs) are used as learning models.
In this work, we establish necessary and sufficient conditions under which RFF does indeed provide an efficient dequantization of variational quantum machine learning for regression.
arXiv Detail & Related papers (2023-09-20T21:23:52Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits [7.298440208725654]
We introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models.
We show that our method can significantly improve the performance of hybrid quantum-classical models.
arXiv Detail & Related papers (2022-08-23T19:47:37Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum Architecture Search with Meta-learning [0.18899300124593643]
Variational quantum algorithms (VQAs) have been successfully applied to quantum approximate optimization algorithms, variational quantum compiling and quantum machine learning models.
Quantum architecture search (QAS) aims to automate the design of quantum circuits with classical optimization algorithms.
arXiv Detail & Related papers (2021-06-11T08:59:16Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Neural Predictor based Quantum Architecture Search [15.045985536395479]
Variational quantum algorithms (VQAs) are widely speculated to deliver quantum advantages for practical problems under the quantum-classical hybrid computational paradigm in the near term.
In this work, we propose to use a neural network based predictor as the evaluation policy for quantum architecture search (QAS)
arXiv Detail & Related papers (2021-03-11T08:26:12Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.