論文の概要: PWESuite: Phonetic Word Embeddings and Tasks They Facilitate
- arxiv url: http://arxiv.org/abs/2304.02541v4
- Date: Tue, 26 Mar 2024 10:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 01:49:43.731385
- Title: PWESuite: Phonetic Word Embeddings and Tasks They Facilitate
- Title(参考訳): PWESuite: 話し言葉の埋め込みとタスク
- Authors: Vilém Zouhar, Kalvin Chang, Chenxuan Cui, Nathaniel Carlson, Nathaniel Robinson, Mrinmaya Sachan, David Mortensen,
- Abstract要約: 音声による単語の埋め込みを構築するために,音声特徴を用いた3つの手法を開発した。
また、過去、現在、将来のメソッドを適切に評価するためのタスクスイートも提供します。
- 参考スコア(独自算出の注目度): 37.09948594297879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping words into a fixed-dimensional vector space is the backbone of modern NLP. While most word embedding methods successfully encode semantic information, they overlook phonetic information that is crucial for many tasks. We develop three methods that use articulatory features to build phonetically informed word embeddings. To address the inconsistent evaluation of existing phonetic word embedding methods, we also contribute a task suite to fairly evaluate past, current, and future methods. We evaluate both (1) intrinsic aspects of phonetic word embeddings, such as word retrieval and correlation with sound similarity, and (2) extrinsic performance on tasks such as rhyme and cognate detection and sound analogies. We hope our task suite will promote reproducibility and inspire future phonetic embedding research.
- Abstract(参考訳): 単語を固定次元ベクトル空間にマッピングすることは、現代のNLPのバックボーンである。
ほとんどの単語埋め込み手法は意味情報をエンコードすることに成功したが、多くのタスクにおいて重要な音声情報を見落としている。
音声による単語の埋め込みを構築するために,音声特徴を用いた3つの手法を開発した。
既存の音声単語埋め込み手法の不整合性評価に対処するため,過去,現在,未来を正確に評価するためのタスクスイートも提案する。
本研究では,(1)単語検索や音声類似性との相関などの単語埋め込みの本質的な側面と,(2)韻律やコグネート検出,および音響類似性といったタスクにおける外在的性能を評価する。
われわれのタスクスイートは再現性を促進し、将来の音声埋め込み研究を刺激することを期待している。
関連論文リスト
- An Evaluation of Sindhi Word Embedding in Semantic Analogies and Downstream Tasks [2.3624125155742064]
我々は,複数のWebリソースから6100万以上の単語をクロールする新しい単語埋め込み型コーパスを提案する。
クロールデータから不要なテキストをフィルタリングするための前処理パイプラインを設計する。
クリーニングされた語彙は、最先端の連続バグ・オブ・ワード、スキップグラム、GloVeワード埋め込みアルゴリズムに供給される。
論文 参考訳(メタデータ) (2024-08-28T11:36:29Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - Spell my name: keyword boosted speech recognition [25.931897154065663]
名前や専門用語のような一般的な言葉は、会話を文脈で理解するのに重要である。
本稿では、これらの非一般的なキーワードをよりよく認識できる、単純だが強力なASR復号法を提案する。
本手法は,音響モデル予測に基づくビームサーチにおいて,与えられたキーワードの確率を高める。
本稿では,本手法の有効性を実世界の会話の内部データとLibriSpeeechテストセットで実証する。
論文 参考訳(メタデータ) (2021-10-06T14:16:57Z) - UCPhrase: Unsupervised Context-aware Quality Phrase Tagging [63.86606855524567]
UCPhraseは、教師なしの文脈対応のフレーズタグである。
我々は,一貫した単語列から,高品質なフレーズを銀のラベルとして表現する。
我々の設計は、最先端の事前訓練、教師なし、遠隔管理の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-05-28T19:44:24Z) - Enhanced word embeddings using multi-semantic representation through
lexical chains [1.8199326045904998]
フレキシブル・レキシカル・チェーンIIと固定レキシカル・チェーンIIという2つの新しいアルゴリズムを提案する。
これらのアルゴリズムは、語彙連鎖から派生した意味関係、語彙データベースからの以前の知識、および単一のシステムを形成するビルディングブロックとしての単語埋め込みにおける分布仮説の堅牢性を組み合わせている。
その結果、語彙チェーンと単語埋め込み表現の統合は、より複雑なシステムに対しても、最先端の結果を維持します。
論文 参考訳(メタデータ) (2021-01-22T09:43:33Z) - STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation
Learning [2.28438857884398]
本稿では、音声とテキストの絡み合いを利用して単語表現を学習する、新しいマルチモーダルディープニューラルネットワークアーキテクチャを提案する。
STEPs-RLは、対象の音声単語の音声シーケンスを予測するために教師付き方法で訓練される。
我々のモデルにより生成された潜在表現は、89.47%の精度でターゲット音素列を予測することができた。
論文 参考訳(メタデータ) (2020-11-23T13:29:16Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
我々は,単語の集合を互いに近づけることで,単語の埋め込み空間の一部を調整できるようにする。
提案手法では,単語埋め込みにおける潜在的なバイアスをユーザが操作する際,選択的な後処理をトリガーし,評価することができる。
論文 参考訳(メタデータ) (2020-09-30T21:54:22Z) - Seeing wake words: Audio-visual Keyword Spotting [103.12655603634337]
KWS-Netは、類似マップ中間表現を用いてタスクをシーケンスマッチングとパターン検出に分離する新しい畳み込みアーキテクチャである。
本手法は他の言語,特にフランス語とドイツ語に一般化し,より少ない言語データで英語に匹敵する性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-02T17:57:38Z) - On Vocabulary Reliance in Scene Text Recognition [79.21737876442253]
ボキャブラリ内の単語を持つ画像に対して、手法は良好に機能するが、ボキャブラリ外の単語を持つ画像にはあまり一般化しない。
私たちはこの現象を「語彙依存」と呼んでいる。
本研究では,2家族のモデルが協調的に学習できるようにするための,シンプルで効果的な相互学習戦略を提案する。
論文 参考訳(メタデータ) (2020-05-08T11:16:58Z) - Techniques for Vocabulary Expansion in Hybrid Speech Recognition Systems [54.49880724137688]
語彙外単語(OOV)の問題は、音声認識システムにおいて典型的である。
OOVをカバーするための一般的なアプローチの1つは、単語ではなくサブワード単位を使用することである。
本稿では,グラフ構築法と探索法の両方のレベルで,この解の既存手法について検討する。
論文 参考訳(メタデータ) (2020-03-19T21:24:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。