論文の概要: Segment Anything
- arxiv url: http://arxiv.org/abs/2304.02643v1
- Date: Wed, 5 Apr 2023 17:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 11:48:47.221426
- Title: Segment Anything
- Title(参考訳): あらゆるセグメント
- Authors: Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe
Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg,
Wan-Yen Lo, Piotr Doll\'ar, Ross Girshick
- Abstract要約: 私たちはこれまでで最大のセグメンテーションデータセットを構築し、1100万ライセンスのマスクを10億枚以上使用し、画像のプライバシーを尊重しています。
このモデルは、高速に撮影できるように設計および訓練されており、ゼロショットを新しい画像配信やタスクに転送することができる。
多数のタスクでその能力を評価した結果、ゼロショット性能は印象的であることが判明した。
- 参考スコア(独自算出の注目度): 108.16489338211093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Segment Anything (SA) project: a new task, model, and
dataset for image segmentation. Using our efficient model in a data collection
loop, we built the largest segmentation dataset to date (by far), with over 1
billion masks on 11M licensed and privacy respecting images. The model is
designed and trained to be promptable, so it can transfer zero-shot to new
image distributions and tasks. We evaluate its capabilities on numerous tasks
and find that its zero-shot performance is impressive -- often competitive with
or even superior to prior fully supervised results. We are releasing the
Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and
11M images at https://segment-anything.com to foster research into foundation
models for computer vision.
- Abstract(参考訳): 画像分割のための新しいタスク、モデル、データセットであるsegment anything(sa)プロジェクトを紹介します。
データ収集ループで効率的なモデルを使用して、これまでで最大のセグメンテーションデータセットを構築しました。
モデルの設計とトレーニングにより、ゼロショットを新しい画像配信やタスクに転送することができる。
私たちは、多くのタスクでその能力を評価し、ゼロショットのパフォーマンスが印象的なものであることを見つけます。
コンピュータビジョンの基礎モデルの研究を促進するため、Segment Anything Model(SAM)およびそれに対応するデータセット(SA-1B)をhttps://segment-anything.comでリリースする。
関連論文リスト
- UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation [64.01742988773745]
未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2024-10-13T16:34:46Z) - SAM 2: Segment Anything in Images and Videos [63.44869623822368]
本稿では,画像やビデオにおける迅速な視覚的セグメンテーションの解決に向けた基礎モデルであるセグメンション・エキシング・モデル2(SAM2)を提案する。
ユーザインタラクションを通じてモデルとデータを改善するデータエンジンを構築し、これまでで最大のビデオセグメンテーションデータセットを収集します。
我々のモデルは、リアルタイムビデオ処理のためのストリーミングメモリを備えたシンプルなトランスフォーマーアーキテクチャである。
論文 参考訳(メタデータ) (2024-08-01T17:00:08Z) - Toffee: Efficient Million-Scale Dataset Construction for Subject-Driven Text-to-Image Generation [58.09421301921607]
我々は、主観的画像編集と生成のための最初の大規模データセットを構築した。
データセットは、以前の最大のデータセットの5倍のサイズですが、コストは、何万時間も低いです。
論文 参考訳(メタデータ) (2024-06-13T16:40:39Z) - EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment
Anything [36.553867358541154]
Segment Anything Model (SAM)は多くの視覚アプリケーションのための強力なツールとして登場した。
本稿では,軽量なSAMモデルであるEfficientSAMを提案する。
我々のアイデアは、SAM画像エンコーダから特徴を再構築し、効果的な視覚的表現学習を実現するためのマスク付き画像事前学習(SAMI)を活用することに基づいている。
論文 参考訳(メタデータ) (2023-12-01T18:31:00Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
本稿では,任意の粒度でセグメンテーションと認識を可能にする汎用画像セグメンテーションモデルであるSemantic-SAMを紹介する。
複数のデータセットを3つの粒度に集約し、オブジェクトとパーツの分離した分類を導入する。
マルチグラニュラリティ機能を実現するために,各クリックで複数のレベルのマスクを生成できるマルチ選択学習方式を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:59:40Z) - Segment Anything in High Quality [116.39405160133315]
そこで本研究では,SAM のプロンプト可能な設計,効率,ゼロショットの一般化性を維持しつつ,任意のオブジェクトを正確にセグメント化できる HQ-SAM を提案する。
注意深い設計はSAMの事前訓練されたモデルの重みを再利用し、保存し、最小限の追加パラメータと計算しか導入しない。
ダウンストリームタスクにまたがる10種類のセグメンテーションデータセットでHQ-SAMの有効性を示し,そのうち8つをゼロショット転送プロトコルで評価した。
論文 参考訳(メタデータ) (2023-06-02T14:23:59Z) - SAM on Medical Images: A Comprehensive Study on Three Prompt Modes [12.42280534113305]
Segment Anything Model(SAM)が最近デビューし、多くの研究者がゼロショットの一般化能力の観点からその可能性と限界を探究した。
本稿では,SAMが医用画像分割タスクの基礎モデルになる可能性について評価する。
また、異なるモダリティを持つ最高のゼロショットパフォーマンスに、どのようなプロンプトが導くかについても検討する。
論文 参考訳(メタデータ) (2023-04-28T18:18:07Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - Learning to "Segment Anything" in Thermal Infrared Images through
Knowledge Distillation with a Large Scale Dataset SATIR [15.198798677908615]
Segment Anything Model(SAM)は、Meta AIが最近導入した、プロンプト可能なセグメンテーションモデルである。
熱赤外画像セグメンテーションタスクの事前訓練にSAMを用いて擬似ラベルを生成するフレームワークを提案する。
我々のフレームワークはSAMのような大規模データで訓練されたモデルと協調して特殊分野の問題に対処するための新しいアプローチを提示している。
論文 参考訳(メタデータ) (2023-04-17T03:27:10Z) - Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot
Segmentation on Whole Slide Imaging [12.533476185972527]
画像セグメンテーションの基礎モデルとしてセグメンテーションモデル(SAM)がリリースされた。
スライド画像全体(WSI)における代表セグメンテーションタスクにおけるSAMモデルのゼロショットセグメンテーション性能を評価する。
その結果,0ショットSAMモデルは大きな連結オブジェクトに対して顕著なセグメンテーション性能を実現することが示唆された。
論文 参考訳(メタデータ) (2023-04-09T04:06:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。