論文の概要: Graph Representation Learning for Interactive Biomolecule Systems
- arxiv url: http://arxiv.org/abs/2304.02656v1
- Date: Wed, 5 Apr 2023 08:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 16:41:19.618040
- Title: Graph Representation Learning for Interactive Biomolecule Systems
- Title(参考訳): 対話型生体分子システムのためのグラフ表現学習
- Authors: Xinye Xiong, Bingxin Zhou, Yu Guang Wang
- Abstract要約: 本稿では,生物分子や系をコンピュータで認識可能な物体として表現する手法について概説する。
グラフに基づく手法に重点を置いた幾何学的なディープラーニングモデルが、生体分子データを分析して、薬物発見、タンパク質のキャラクタリゼーション、生物学的システム分析を可能にする方法について検討する。
- 参考スコア(独自算出の注目度): 2.786956882821218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deep learning models have revolutionized the study of biomolecule
systems and their mechanisms. Graph representation learning, in particular, is
important for accurately capturing the geometric information of biomolecules at
different levels. This paper presents a comprehensive review of the
methodologies used to represent biological molecules and systems as
computer-recognizable objects, such as sequences, graphs, and surfaces.
Moreover, it examines how geometric deep learning models, with an emphasis on
graph-based techniques, can analyze biomolecule data to enable drug discovery,
protein characterization, and biological system analysis. The study concludes
with an overview of the current state of the field, highlighting the challenges
that exist and the potential future research directions.
- Abstract(参考訳): ディープラーニングモデルの進歩は、生体分子系とその機構の研究に革命をもたらした。
特にグラフ表現学習は,生体分子の幾何学的情報を異なるレベルで正確に把握するために重要である。
本稿では,生物分子や系をコンピュータで認識可能なオブジェクトとして表現する手法,例えば配列,グラフ,表面などについて概説する。
さらに、グラフに基づく手法を重視した幾何学的深層学習モデルが、生体分子データを分析して、薬物発見、タンパク質のキャラクタリゼーション、生物学的システム分析を可能にする方法について検討する。
この研究は、この分野の現在の状況の概要と、存在する課題と今後の研究の方向性を強調して締めくくっている。
関連論文リスト
- Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease [13.630617713928197]
グラフニューラルネットワークは、古典的な統計学と機械学習の方法に代わる有望な代替手段として登場した。
本研究では,ケースコントロール分類のためのグラフ表現学習モデルについて検討する。
タンパク質-タンパク質相互作用やメタボライト-メタボライト相互作用を含む,サンプル類似性ネットワークと分子相互作用ネットワークから得られたトポロジーを比較した。
論文 参考訳(メタデータ) (2024-06-20T16:06:39Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
生物分子モデリングと自然言語(BL)の統合は、人工知能、化学、生物学の交差点において有望な学際領域として現れてきた。
生体分子と自然言語の相互モデリングによって達成された最近の進歩について分析する。
論文 参考訳(メタデータ) (2024-03-03T14:59:47Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Studying Limits of Explainability by Integrated Gradients for Gene
Expression Models [3.220287168504093]
重要度によるランク付け機能は,バイオマーカーの同定に十分ではないことを示す。
バイオマーカーが真理を知らないままに関係する原因を反映しているかどうかを評価することは難しいため、階層的モデルを提案することで遺伝子発現データをシミュレートする。
論文 参考訳(メタデータ) (2023-03-19T19:54:15Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
医療データを分析するために、機械学習、特にディープラーニングメソッドをどのように活用するかを検討することが重要になっている。
既存のメソッドの大きな制限は、グリッドのようなデータにフォーカスすることです。
グラフニューラルネットワークは、生物学的システムに存在する暗黙の情報を利用することによって、大きな注目を集めている。
論文 参考訳(メタデータ) (2021-05-27T13:32:45Z) - Utilising Graph Machine Learning within Drug Discovery and Development [19.21101749270075]
グラフ機械学習(gml)は、生体分子構造をモデル化する能力から、製薬およびバイオテクノロジー業界で注目を集めている。
本稿では,創薬・開発におけるトピックの多分野の学術・産業的考察を行う。
重要な用語とモデリングアプローチを導入した後、薬物開発パイプラインを経時的に経時的に移動し、標的の同定、小さな分子や生物の設計、薬物の再利用などを含む作業の特定と要約を行う。
論文 参考訳(メタデータ) (2020-12-09T10:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。