論文の概要: Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease
- arxiv url: http://arxiv.org/abs/2406.14442v1
- Date: Thu, 20 Jun 2024 16:06:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:52:55.914194
- Title: Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease
- Title(参考訳): Omics Dataのためのグラフ表現学習戦略:パーキンソン病を事例として
- Authors: Elisa Gómez de Lope, Saurabh Deshpande, Ramón Viñas Torné, Pietro Liò, Enrico Glaab, Stéphane P. A. Bordas,
- Abstract要約: グラフニューラルネットワークは、古典的な統計学と機械学習の方法に代わる有望な代替手段として登場した。
本研究では,ケースコントロール分類のためのグラフ表現学習モデルについて検討する。
タンパク質-タンパク質相互作用やメタボライト-メタボライト相互作用を含む,サンプル類似性ネットワークと分子相互作用ネットワークから得られたトポロジーを比較した。
- 参考スコア(独自算出の注目度): 13.630617713928197
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Omics data analysis is crucial for studying complex diseases, but its high dimensionality and heterogeneity challenge classical statistical and machine learning methods. Graph neural networks have emerged as promising alternatives, yet the optimal strategies for their design and optimization in real-world biomedical challenges remain unclear. This study evaluates various graph representation learning models for case-control classification using high-throughput biological data from Parkinson's disease and control samples. We compare topologies derived from sample similarity networks and molecular interaction networks, including protein-protein and metabolite-metabolite interactions (PPI, MMI). Graph Convolutional Network (GCNs), Chebyshev spectral graph convolution (ChebyNet), and Graph Attention Network (GAT), are evaluated alongside advanced architectures like graph transformers, the graph U-net, and simpler models like multilayer perceptron (MLP). These models are systematically applied to transcriptomics and metabolomics data independently. Our comparative analysis highlights the benefits and limitations of various architectures in extracting patterns from omics data, paving the way for more accurate and interpretable models in biomedical research.
- Abstract(参考訳): Omicsデータ分析は複雑な疾患の研究には不可欠であるが、その高次元性と不均一性は古典的な統計的および機械学習手法に挑戦する。
グラフニューラルネットワークは有望な代替手段として登場したが、現実のバイオメディカルな課題における設計と最適化のための最適な戦略はまだ不明である。
本研究は,パーキンソン病および対照試料からの高スループット生物学的データを用いて,ケースコントロール分類のための様々なグラフ表現学習モデルを評価する。
タンパク質-タンパク質とメタボライト-メタボライト相互作用(PPI, MMI)を含む,サンプル類似性ネットワークと分子相互作用ネットワークから得られたトポロジーを比較した。
グラフ畳み込みネットワーク(GCN)、チェビシェフスペクトルグラフ畳み込み(ChebyNet)、グラフ注意ネットワーク(GAT)は、グラフトランスフォーマー、グラフU-net、マルチ層パーセプトロン(MLP)といったより単純なモデルとともに評価される。
これらのモデルは、独立して転写学と代謝学のデータに体系的に適用される。
我々の比較分析は、オミクスデータからパターンを抽出し、バイオメディカル研究においてより正確で解釈可能なモデルを構築する際に、様々なアーキテクチャの利点と限界を強調している。
関連論文リスト
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
マルチオミクスデータ統合は、高次元性、データ複雑さ、および様々なオミクスタイプの異なる特徴により、大きな課題を生じさせる。
本研究では、グラフ畳み込みネットワーク(GCN)、グラフアテンションネットワーク(GAT)、グラフトランスフォーマーネットワーク(GTN)に基づくマルチオミクス(MO)統合のための3つのグラフニューラルネットワークアーキテクチャを評価する。
論文 参考訳(メタデータ) (2024-10-05T16:17:44Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
ニューロイメージングにおける形状分類のための幾何学的深層学習の現状について概説する。
ノード機能としてFPFHを使用することで,GNNの性能が大幅に向上し,アウト・オブ・ディストリビューションデータへの一般化が期待できる。
以上の結果から,アルツハイマー病の分類を応用し,臨床的に有意な課題を確定した。
論文 参考訳(メタデータ) (2022-10-29T19:03:01Z) - Neural Graphical Models [2.6842860806280058]
本稿では,複雑な特徴依存を合理的な計算コストで表現するために,NGM(Neural Graphical Models)を導入する。
ニューラルネットワークをマルチタスク学習フレームワークとして使用することにより,機能間の依存関係構造と複雑な関数表現をキャプチャする。
NGMは、有向グラフ、無向グラフ、混合エッジグラフを含む一般的なグラフ構造に適合し、混合入力データ型をサポートする。
論文 参考訳(メタデータ) (2022-10-02T07:59:51Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
新しいグラフメタ学習フレームワーク - Graph Hallucination Networks (Meta-GHN) を提案する。
新たなロバストネス強化エピソードトレーニングに基づいて、Meta-GHNは、弱いラベル付きデータからクリーンノード表現を幻覚させるメタ学習を行う。
大規模な実験は、既存のグラフメタ学習研究よりもMeta-GHNの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-06-12T22:22:10Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。