論文の概要: ACTION++: Improving Semi-supervised Medical Image Segmentation with
Adaptive Anatomical Contrast
- arxiv url: http://arxiv.org/abs/2304.02689v1
- Date: Wed, 5 Apr 2023 18:33:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 16:31:07.068946
- Title: ACTION++: Improving Semi-supervised Medical Image Segmentation with
Adaptive Anatomical Contrast
- Title(参考訳): action++: アダプティブ解剖学的コントラストによる半教師付き医用画像分割の改善
- Authors: Chenyu You, Weicheng Dai, Yifei Min, Lawrence Staib, Jas Sekhon, James
S. Duncan
- Abstract要約: 半教師型医療セグメンテーションのための適応的解剖学的コントラストを持つ改良型コントラスト学習フレームワークであるACTION++を提案する。
我々は、長い尾の医療データに対する対照的な損失において、一定温度の$tau$を盲目的に採用することは、最適ではないと論じている。
ACTION++は2つの半教師付き設定で最先端を実現する。
- 参考スコア(独自算出の注目度): 10.259713750306458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical data often exhibits long-tail distributions with heavy class
imbalance, which naturally leads to difficulty in classifying the minority
classes (i.e., boundary regions or rare objects). Recent work has significantly
improved semi-supervised medical image segmentation in long-tailed scenarios by
equipping them with unsupervised contrastive criteria. However, it remains
unclear how well they will perform in the labeled portion of data where class
distribution is also highly imbalanced. In this work, we present ACTION++, an
improved contrastive learning framework with adaptive anatomical contrast for
semi-supervised medical segmentation. Specifically, we propose an adaptive
supervised contrastive loss, where we first compute the optimal locations of
class centers uniformly distributed on the embedding space (i.e., off-line),
and then perform online contrastive matching training by encouraging different
class features to adaptively match these distinct and uniformly distributed
class centers. Moreover, we argue that blindly adopting a constant temperature
$\tau$ in the contrastive loss on long-tailed medical data is not optimal, and
propose to use a dynamic $\tau$ via a simple cosine schedule to yield better
separation between majority and minority classes. Empirically, we evaluate
ACTION++ on ACDC and LA benchmarks and show that it achieves state-of-the-art
across two semi-supervised settings. Theoretically, we analyze the performance
of adaptive anatomical contrast and confirm its superiority in label
efficiency.
- Abstract(参考訳): 医学的データは、しばしば重いクラスの不均衡を伴うロングテール分布を示すため、マイノリティクラス(すなわち境界領域や希少なオブジェクト)の分類が困難になる。
最近の研究は、教師なしのコントラスト基準を付与することで、ロングテールシナリオにおける半教師付き医用画像分割を大幅に改善した。
しかし、クラス分布が高度に不均衡なデータのラベル付き部分で、どの程度うまく機能するかは、まだ不明である。
本稿では,半教師付き医学セグメント化のための適応的解剖学的コントラストを備えた,改良型コントラスト学習フレームワークであるaction++を提案する。
具体的には、まず、組込み空間(例えばオフライン)に均一に分布するクラスセンターの最適位置を計算し、異なるクラス特徴に適応的かつ一様に分布するクラスセンターを適応的に適合させることにより、オンラインコントラストマッチング訓練を行う適応型教師付きコントラスト損失を提案する。
さらに,ロングテール医療データに対する対照的な損失において,一定温度である$\tau$ を盲目的に採用することは最適ではなく,単純なコサインスケジュールを通じて動的$\tau$ を使うことを提案し,多数派と少数派階級の分離性を高める。
ACDCとLAのベンチマークでACTION++を評価し、2つの半教師付き設定で最先端を実現することを示す。
理論的には,適応解剖学的コントラストの性能を解析し,ラベル効率の優位性を確認した。
関連論文リスト
- Addressing Imbalance for Class Incremental Learning in Medical Image Classification [14.242875524728495]
不均衡の悪影響を軽減するために2つのプラグイン法を導入する。
まず、多数派に対する分類バイアスを軽減するために、CILバランスの取れた分類損失を提案する。
第2に,組込み空間におけるクラス間重複を緩和するだけでなく,クラス内コンパクト性も緩和する分布マージン損失を提案する。
論文 参考訳(メタデータ) (2024-07-18T17:59:44Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
クラス不均衡半教師付きFL(imFed-Semi)の実用的かつ困難な問題について検討する。
このImFed-Semi問題は、クラス比例情報を利用してクライアントトレーニングを改善する新しい動的銀行学習方式によって解決される。
25,000個のCTスライスによる頭蓋内出血診断と10,015個の皮膚内視鏡画像による皮膚病変診断の2つの公開実世界の医療データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-27T06:51:48Z) - Bootstrapping Semi-supervised Medical Image Segmentation with
Anatomical-aware Contrastive Distillation [10.877450596327407]
半教師型医用画像セグメンテーションのための解剖学的認識型ConTrastive dIstillatiONフレームワークであるACTIONを提案する。
まず, 正対と負対の2値監督ではなく, 負対をソフトにラベル付けして, 反復的コントラスト蒸留法を開発した。
また、サンプルデータの多様性を強制するために、ランダムに選択された負の集合から、より意味論的に類似した特徴を抽出する。
論文 参考訳(メタデータ) (2022-06-06T01:30:03Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。