論文の概要: Leveraging Social Interactions to Detect Misinformation on Social Media
- arxiv url: http://arxiv.org/abs/2304.02983v1
- Date: Thu, 6 Apr 2023 10:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 14:28:31.794698
- Title: Leveraging Social Interactions to Detect Misinformation on Social Media
- Title(参考訳): ソーシャルメディア上での誤情報検出にソーシャルインタラクションを活用する
- Authors: Tommaso Fornaciari, Luca Luceri, Emilio Ferrara, Dirk Hovy
- Abstract要約: 新型コロナウイルスのパンデミックで生成されたデータセットを使って、この問題に対処する。
情報ソースの以前の評価に基づいて、信頼性または信頼性が低いとラベル付けされた情報を議論するツイートのカスケードを含む。
我々は、ネットワーク情報にも活用する。ホモフィリ原理に従えば、対話するユーザは、一般的に同様の話題に興味を持ち、同様の種類のニュースを拡散する、という仮説を立てる。
- 参考スコア(独自算出の注目度): 25.017602051478768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting misinformation threads is crucial to guarantee a healthy
environment on social media. We address the problem using the data set created
during the COVID-19 pandemic. It contains cascades of tweets discussing
information weakly labeled as reliable or unreliable, based on a previous
evaluation of the information source. The models identifying unreliable threads
usually rely on textual features. But reliability is not just what is said, but
by whom and to whom. We additionally leverage on network information. Following
the homophily principle, we hypothesize that users who interact are generally
interested in similar topics and spreading similar kind of news, which in turn
is generally reliable or not. We test several methods to learn representations
of the social interactions within the cascades, combining them with deep neural
language models in a Multi-Input (MI) framework. Keeping track of the sequence
of the interactions during the time, we improve over previous state-of-the-art
models.
- Abstract(参考訳): ソーシャルメディア上で健全な環境を保証するためには,誤った情報スレッドの検出が不可欠である。
新型コロナウイルスのパンデミックで生成されたデータセットを使ってこの問題に対処する。
情報ソースの以前の評価に基づいて、信頼性または信頼性が低いとラベル付けされた情報を議論するツイートのカスケードを含む。
信頼できないスレッドを特定するモデルは、通常テキスト機能に依存します。
しかし、信頼性は言うことだけでなく、誰から誰へもです。
ネットワーク情報も活用しています。
ホモフィリ原理に従えば、対話するユーザは、一般的に同様のトピックに興味を持ち、同様の種類のニュースを拡散する、という仮説を立てる。
我々は,カスケード内の社会的相互作用の表現を学習するためのいくつかの手法を試験し,それらを多入力(MI)フレームワークで深層ニューラルネットワークモデルと組み合わせた。
インタラクションのシーケンスを時間内に追跡し続けることで、従来の最先端モデルよりも改善する。
関連論文リスト
- Adaptive Learning of Consistency and Inconsistency Information for Fake News Detection [28.718460312783257]
偽ニュースを検出するために,適応型マルチモーダル機能融合ネットワーク(MFF-Net)を提案する。
MFF-Netは複数の機能融合モジュールを通じてモード間の整合性情報を学習する。
実際のソーシャルメディアから派生した3つの公開ニュースデータセットにおいて、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-08-15T08:22:10Z) - Crowd Intelligence for Early Misinformation Prediction on Social Media [29.494819549803772]
本稿では,クラウドインテリジェンスに基づく早期誤報予測手法であるCROWDSHIELDを紹介する。
私たちは2つの次元(スタンスとクレーム)を捉えるためにQラーニングを採用しています。
我々は手動で誤情報検出を行うTwitterコーパスであるMISTを提案する。
論文 参考訳(メタデータ) (2024-08-08T13:45:23Z) - A Semi-supervised Fake News Detection using Sentiment Encoding and LSTM with Self-Attention [0.0]
本研究では,感情分析を最先端の事前学習モデルによって獲得する半教師付き自己学習手法を提案する。
学習モデルは半教師付き方式で訓練され、LSTMに自己注意層を組み込む。
我々は,2万件のニュースコンテンツをデータセットにベンチマークし,そのフィードバックとともに,フェイクニュース検出における競合手法と比較して精度,リコール,測定性能が向上したことを示す。
論文 参考訳(メタデータ) (2024-07-27T20:00:10Z) - An Interactive Framework for Profiling News Media Sources [26.386860411085053]
本稿では,ニュースメディアのプロファイリングのためのインタラクティブなフレームワークを提案する。
グラフベースのニュースメディアプロファイリングモデル、事前訓練された大規模言語モデル、人間の洞察の強みを組み合わせる。
人間のインタラクションが5つにも満たないので、我々のフレームワークはフェイクや偏見のあるニュースメディアを素早く検出できる。
論文 参考訳(メタデータ) (2023-09-14T02:03:45Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
この研究は、COVID-19トピックに関するGab内のインタラクションパターンの特徴を提供する。
疑わしい、信頼できるコンテンツに対する社会的反応には、統計的に強い違いはない。
本研究は,協調した不正確な行動の理解と情報操作の早期警戒に関する知見を提供する。
論文 参考訳(メタデータ) (2020-06-03T11:34:25Z) - Information Credibility in the Social Web: Contexts, Approaches, and
Open Issues [2.2133187119466116]
信頼性(英語: Cliability)とは、個人によって認識される品質であり、必ずしも自分の認知能力と偽の情報とを区別できるわけではない。
ソーシャルメディアにおける信頼性を自動的に評価するためのいくつかのアプローチが提案されている。
論文 参考訳(メタデータ) (2020-01-26T15:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。