A Simple Construction of Quantum Public-Key Encryption from
Quantum-Secure One-Way Functions
- URL: http://arxiv.org/abs/2303.01143v1
- Date: Thu, 2 Mar 2023 10:45:16 GMT
- Title: A Simple Construction of Quantum Public-Key Encryption from
Quantum-Secure One-Way Functions
- Authors: Khashayar Barooti and Giulio Malavolta and Michael Walter
- Abstract summary: We show that quantum PKE can be constructed from any quantum-secure one-way function.
Our construction is simple, uses only classical ciphertexts, and satisfies the strong notion of CCA security.
- Score: 13.677574076242188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum public-key encryption [Gottesman; Kawachi et al., Eurocrypt'05]
generalizes public-key encryption (PKE) by allowing the public keys to be
quantum states. Prior work indicated that quantum PKE can be constructed from
assumptions that are potentially weaker than those needed to realize its
classical counterpart. In this work, we show that quantum PKE can be
constructed from any quantum-secure one-way function. In contrast, classical
PKE is believed to require more structured assumptions. Our construction is
simple, uses only classical ciphertexts, and satisfies the strong notion of CCA
security.
Related papers
- Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Towards the Impossibility of Quantum Public Key Encryption with
Classical Keys from One-Way Functions [0.5999777817331317]
It has been recently shown that public-key encryption (PKE) from one-way functions (OWF) is possible if we consider quantum public keys.
In this paper, we focus on black-box separation for PKE with classical public key and quantum ciphertext from OWF.
arXiv Detail & Related papers (2023-11-06T20:41:25Z) - Public-Key Encryption with Quantum Keys [11.069434965621683]
We study the notion of quantum public-key encryption (qPKE) where keys are allowed to be quantum states.
We show that computational assumptions are necessary to build quantum public-key encryption.
arXiv Detail & Related papers (2023-06-13T11:32:28Z) - Robust Quantum Public-Key Encryption with Applications to Quantum Key
Distribution [16.06159998475861]
Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key, while communicating over a public (untrusted) quantum channel.
It has two main advantages: (i) The key is unconditionally hidden to the eyes of any attacker, and (ii) its security assumes only the existence of authenticated classical channels.
We propose a two-message QKD protocol that satisfies everlasting security, assuming only the existence of quantum-secure one-way functions.
arXiv Detail & Related papers (2023-04-06T11:14:55Z) - Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions [12.45203887838637]
We construct quantum public-key encryption from one-way functions.
In our construction, public keys are quantum, but ciphertexts are classical.
arXiv Detail & Related papers (2023-04-04T13:57:17Z) - Encryption with Quantum Public Keys [1.7725414095035827]
We study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions.
We propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.
arXiv Detail & Related papers (2023-03-09T16:17:19Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.