論文の概要: Multi-task learning for tissue segmentation and tumor detection in
colorectal cancer histology slides
- arxiv url: http://arxiv.org/abs/2304.03101v1
- Date: Thu, 6 Apr 2023 14:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 13:59:48.606976
- Title: Multi-task learning for tissue segmentation and tumor detection in
colorectal cancer histology slides
- Title(参考訳): 大腸癌組織スライドにおける組織分画と腫瘍検出のマルチタスク学習
- Authors: Lydia A. Schoenpflug, Maxime W. Lafarge, Anja L. Frei, Viktor H.
Koelzer
- Abstract要約: U-Netに基づくマルチタスクモデルとチャネルワイドおよび画像統計に基づくカラー拡張を提案する。
組織分画は8655(Arm1), AUROCは8515(Arm2), AUROCは9725(Arm1), 0.9750(Arm2)であった。
- 参考スコア(独自算出の注目度): 0.9176056742068814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating tissue segmentation and tumor detection in histopathology images
of colorectal cancer (CRC) is an enabler for faster diagnostic pathology
workflows. At the same time it is a challenging task due to low availability of
public annotated datasets and high variability of image appearance. The
semi-supervised learning for CRC detection (SemiCOL) challenge 2023 provides
partially annotated data to encourage the development of automated solutions
for tissue segmentation and tumor detection. We propose a U-Net based
multi-task model combined with channel-wise and image-statistics-based color
augmentations, as well as test-time augmentation, as a candidate solution to
the SemiCOL challenge. Our approach achieved a multi-task Dice score of .8655
(Arm 1) and .8515 (Arm 2) for tissue segmentation and AUROC of .9725 (Arm 1)
and 0.9750 (Arm 2) for tumor detection on the challenge validation set. The
source code for our approach is made publicly available at
https://github.com/lely475/CTPLab_SemiCOL2023.
- Abstract(参考訳): 大腸癌 (CRC) の病理組織像における組織分画と腫瘍検出の自動化は, より高速な診断法として有効である。
同時に、公開アノテートデータセットの可用性が低く、画像表示の変動性が高いため、これは難しい課題である。
CRC検出のための半教師付き学習(SemiCOL)チャレンジ2023は、部分的に注釈付きデータを提供し、組織セグメント化と腫瘍検出のための自動化ソリューションの開発を促進する。
本稿では,U-Netに基づくマルチタスクモデルと,チャネルワイドおよび画像統計に基づくカラー拡張と,テスト時間拡張を併用して,SemiCOLチャレンジの候補解として提案する。
提案手法は .8655 (arm) のマルチタスク dice スコアを達成した。
1)及び.8515(武装)
2).9725(Arm)の組織分節とAUROC
1)及び0.9750(武装)
2) チャレンジ検証セットにおける腫瘍検出について
このアプローチのソースコードはhttps://github.com/lely475/CTPLab_SemiCOL2023で公開されています。
関連論文リスト
- Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Finding Regions of Interest in Whole Slide Images Using Multiple Instance Learning [0.23301643766310368]
病理ラベリングは通常、タイルレベルではなくスライドレベルで行われるため、WSI(Whole Slide Images)はAIベース/AI経由の分析に対する特別な課題である。
本稿では,がんの表現型を正確に予測するために,弱教師付き多重インスタンス学習(MIL)手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T19:33:41Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
この課題には10,091個のパッチレベルのアノテーションと1300万以上のラベル付きピクセルが含まれる。
第一位チームは0.8413mIoUを達成した(腫瘍:0.8389、ストーマ:0.7931、正常:0.8919)。
論文 参考訳(メタデータ) (2022-04-13T15:27:05Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
我々は2つの公開データセットを処理し、転移性癌の予後予測を研究するために合計341人のベンチマークコホートを設定した。
結果予測に適した2つのインジェクティブ複数インスタンスプーリング関数を提案する。
本研究は, 肺がん非小細胞癌における複数症例の学習が, 頭頸部CT結果予測ベンチマークの課題において, 最先端のパフォーマンスを達成できることを示唆するものである。
論文 参考訳(メタデータ) (2022-03-09T16:58:03Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Automatic tumour segmentation in H&E-stained whole-slide images of the
pancreas [2.4431235585344475]
病気の検出とセグメンテーションの精度のバランスをとるために,マルチタスク畳み込みニューラルネットワークを提案する。
異なる解像度で29人の患者を対象にアプローチを検証した。
論文 参考訳(メタデータ) (2021-12-01T22:05:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z) - A Generalized Deep Learning Framework for Whole-Slide Image Segmentation
and Analysis [0.20065923589074736]
病理組織分析は癌診断と予後における金の基準と考えられている。
深層学習に基づく技術は、さまざまな画像解析タスクにおいて、最先端の成果を提供している。
本稿では,病理組織像解析のためのディープラーニングベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-01T18:05:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。