Deep learning-based image exposure enhancement as a pre-processing for
an accurate 3D colon surface reconstruction
- URL: http://arxiv.org/abs/2304.03171v2
- Date: Fri, 14 Apr 2023 23:40:31 GMT
- Title: Deep learning-based image exposure enhancement as a pre-processing for
an accurate 3D colon surface reconstruction
- Authors: Ricardo Espinosa, Carlos Axel Garcia-Vega, Gilberto Ochoa-Ruiz,
Dominique Lamarque, Christian Daul
- Abstract summary: This contribution shows how an appropriate image pre-processing can improve a deep-learning based 3D reconstruction of colon parts.
The assumption is that, rather than global image illumination corrections, local under- and over-exposures should be corrected in colonoscopy.
- Score: 1.0499611180329804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This contribution shows how an appropriate image pre-processing can improve a
deep-learning based 3D reconstruction of colon parts. The assumption is that,
rather than global image illumination corrections, local under- and
over-exposures should be corrected in colonoscopy. An overview of the pipeline
including the image exposure correction and a RNN-SLAM is first given. Then,
this paper quantifies the reconstruction accuracy of the endoscope trajectory
in the colon with and without appropriate illumination correction
Related papers
- ToDER: Towards Colonoscopy Depth Estimation and Reconstruction with Geometry Constraint Adaptation [67.22294293695255]
We propose a novel reconstruction pipeline with a bi-directional adaptation architecture named ToDER to get precise depth estimations.
Experimental results demonstrate that our approach can precisely predict depth maps in both realistic and synthetic colonoscopy videos.
arXiv Detail & Related papers (2024-07-23T14:24:26Z) - Learning 3D Gaussians for Extremely Sparse-View Cone-Beam CT Reconstruction [9.848266253196307]
Cone-Beam Computed Tomography (CBCT) is an indispensable technique in medical imaging, yet the associated radiation exposure raises concerns in clinical practice.
We propose a novel reconstruction framework, namely DIF-Gaussian, which leverages 3D Gaussians to represent the feature distribution in the 3D space.
We evaluate DIF-Gaussian on two public datasets, showing significantly superior reconstruction performance than previous state-of-the-art methods.
arXiv Detail & Related papers (2024-07-01T08:48:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
We introduce a novel method for colon section reconstruction by leveraging NeuS applied to endoscopic images, supplemented by a single frame of depth map.
Our approach demonstrates exceptional accuracy in completely rendering colon sections, even capturing unseen portions of the surface.
This breakthrough opens avenues for achieving stable and consistently scaled reconstructions, promising enhanced quality in cancer screening procedures and treatment interventions.
arXiv Detail & Related papers (2024-04-20T18:06:26Z) - LightNeuS: Neural Surface Reconstruction in Endoscopy using Illumination
Decline [45.49984459497878]
We propose a new approach to 3D reconstruction from sequences of images acquired by monocular endoscopes.
It is based on two key insights. First, endoluminal cavities are watertight, a property naturally enforced by modeling them in terms of a signed distance function.
Second, the scene illumination is variable. It comes from the endoscope's light sources and decays with the inverse of the squared distance to the surface.
arXiv Detail & Related papers (2023-09-06T06:41:40Z) - A Surface-normal Based Neural Framework for Colonoscopy Reconstruction [24.467879991609095]
Reconstructing a 3D surface from colonoscopy video is challenging due to illumination and reflectivity variation in the video frame.
We develop a two-step neural framework that significantly improves the colonoscopy reconstruction quality.
arXiv Detail & Related papers (2023-03-13T16:44:15Z) - Total Scale: Face-to-Body Detail Reconstruction from Sparse RGBD Sensors [52.38220261632204]
Flat facial surfaces frequently occur in the PIFu-based reconstruction results.
We propose a two-scale PIFu representation to enhance the quality of the reconstructed facial details.
Experiments demonstrate the effectiveness of our approach in vivid facial details and deforming body shapes.
arXiv Detail & Related papers (2021-12-03T18:46:49Z) - ColDE: A Depth Estimation Framework for Colonoscopy Reconstruction [27.793186578742088]
In this work we have designed a set of training losses to deal with the special challenges of colonoscopy data.
With the training losses powerful enough, our self-supervised framework named ColDE is able to produce better depth maps of colonoscopy data.
arXiv Detail & Related papers (2021-11-19T04:44:27Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
In this work, we propose an alternative domain-adaptive approach to depth estimation.
Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner.
The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin.
arXiv Detail & Related papers (2021-09-24T08:11:34Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.