論文の概要: FedBot: Enhancing Privacy in Chatbots with Federated Learning
- arxiv url: http://arxiv.org/abs/2304.03228v1
- Date: Tue, 4 Apr 2023 23:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 13:13:58.897408
- Title: FedBot: Enhancing Privacy in Chatbots with Federated Learning
- Title(参考訳): fedbot: 連合学習によるチャットボットのプライバシー向上
- Authors: Addi Ait-Mlouk, Sadi Alawadi, Salman Toor, Andreas Hellander
- Abstract要約: Federated Learning(FL)は、データをその場所に保持する分散学習方法を通じて、データのプライバシを保護することを目的としている。
POCはDeep Bidirectional Transformerモデルとフェデレーション学習アルゴリズムを組み合わせて、コラボレーティブモデルトレーニング中の顧客のデータプライバシを保護する。
このシステムは、過去のインタラクションから学習する能力を活用することで、時間とともにパフォーマンスと精度を向上させるように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chatbots are mainly data-driven and usually based on utterances that might be
sensitive. However, training deep learning models on shared data can violate
user privacy. Such issues have commonly existed in chatbots since their
inception. In the literature, there have been many approaches to deal with
privacy, such as differential privacy and secure multi-party computation, but
most of them need to have access to users' data. In this context, Federated
Learning (FL) aims to protect data privacy through distributed learning methods
that keep the data in its location. This paper presents Fedbot, a
proof-of-concept (POC) privacy-preserving chatbot that leverages large-scale
customer support data. The POC combines Deep Bidirectional Transformer models
and federated learning algorithms to protect customer data privacy during
collaborative model training. The results of the proof-of-concept showcase the
potential for privacy-preserving chatbots to transform the customer support
industry by delivering personalized and efficient customer service that meets
data privacy regulations and legal requirements. Furthermore, the system is
specifically designed to improve its performance and accuracy over time by
leveraging its ability to learn from previous interactions.
- Abstract(参考訳): チャットボットは主にデータ駆動で、通常はセンシティブな発話に基づいている。
しかしながら、共有データによるディープラーニングモデルのトレーニングは、ユーザのプライバシを侵害する可能性がある。
このような問題はチャットボットの登場以来、一般的に存在してきた。
文献では、差分プライバシーやセキュアなマルチパーティ計算など、プライバシを扱うための多くのアプローチがあるが、そのほとんどはユーザーのデータにアクセスする必要がある。
このコンテキストでは、フェデレートラーニング(FL)は、データをその場所に保持する分散学習方法を通じて、データのプライバシを保護することを目的としている。
本稿では,大規模顧客サポートデータを活用した,概念実証(poc)のプライバシ保存型チャットボットであるfeedbotを提案する。
POCはDeep Bidirectional Transformerモデルとフェデレーション学習アルゴリズムを組み合わせて、コラボレーティブモデルトレーニング中の顧客のデータプライバシを保護する。
概念実証の結果は、プライバシー保護のチャットボットが、データプライバシー規則や法的要件を満たすパーソナライズされた効率的なカスタマーサービスを提供することで、カスタマーサポート産業を変革する可能性を示している。
さらに,従来のインタラクションから学習する能力を活用して,時間とともに性能と精度を向上させるように設計されている。
関連論文リスト
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
実際には、制御されたデータアクセスは、多くの産業や研究環境でデータプライバシを保護する主要な方法である。
我々は,FT-PrivacyScoreのプロトタイプを開発し,モデル微調整作業に参加する際のプライバシーリスクを効率よく定量的に推定できることを実証した。
論文 参考訳(メタデータ) (2024-10-30T02:41:26Z) - KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server [48.04903443425111]
大規模言語モデル (LLM) は、多くの当事者が自身のプライベートデータでLPMを微調整できるようにする。
置換のために合成データを利用するような既存のソリューションは、同時にパフォーマンスを改善し、プライバシを保存するのに苦労している。
我々は、合成データ品質を高め、プライバシを確保しつつモデル性能を向上させる新しいクライアントサーバフレームワークであるKnowledgeSGを提案する。
論文 参考訳(メタデータ) (2024-10-08T06:42:28Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
ディープラーニングは、さまざまなタスクにおいて、信じられないほど大きな可能性を秘めている。
プライバシーに関する最近の懸念は、そのようなデータにアクセスする際の課題をさらに強調している。
フェデレーション学習は重要なプライバシー保護技術として登場した。
論文 参考訳(メタデータ) (2024-05-06T16:55:20Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
大規模なWebスクレイプデータセットの使用は、差分プライバシ保存と見なすべきかどうかを疑問視する。
Webデータ上で事前訓練されたこれらのモデルを“プライベート”として公開することで、市民のプライバシーに対する信頼を意味のあるプライバシの定義として損なう可能性があることを警告します。
公的な事前学習がより普及し、強力になるにつれて、私的な学習分野への道のりを議論することで、我々は結論づける。
論文 参考訳(メタデータ) (2022-12-13T10:41:12Z) - Efficient and Privacy Preserving Group Signature for Federated Learning [2.121963121603413]
Federated Learning(FL)は、ユーザデータのプライバシに対する脅威を軽減することを目的とした機械学習(ML)テクニックである。
本稿では,グループ署名に基づくFLの効率的かつプライバシ保護プロトコルを提案する。
論文 参考訳(メタデータ) (2022-07-12T04:12:10Z) - Personalized PATE: Differential Privacy for Machine Learning with
Individual Privacy Guarantees [1.2691047660244335]
トレーニングデータ内に、パーソナライズされたプライバシ保証の異なるMLモデルのトレーニングを支援する3つの新しい方法を提案する。
実験により, 個人化されたプライバシ手法は, 非個人化されたベースラインよりも高い精度のモデルが得られることがわかった。
論文 参考訳(メタデータ) (2022-02-21T20:16:27Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
ディープラーニングに必要な膨大なデータ収集は、明らかにプライバシーの問題を提示している。
写真や音声録音などの、個人的かつ高感度なデータは、収集する企業によって無期限に保持される。
深層ニューラルネットワークは、トレーニングデータに関する情報を記憶するさまざまな推論攻撃の影響を受けやすい。
論文 参考訳(メタデータ) (2020-06-23T01:53:46Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。