論文の概要: Comparing NARS and Reinforcement Learning: An Analysis of ONA and
$Q$-Learning Algorithms
- arxiv url: http://arxiv.org/abs/2304.03291v2
- Date: Mon, 10 Apr 2023 11:01:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 19:49:55.027779
- Title: Comparing NARS and Reinforcement Learning: An Analysis of ONA and
$Q$-Learning Algorithms
- Title(参考訳): NARSと強化学習の比較:ONAと$Q$-Learningアルゴリズムの分析
- Authors: Ali Beikmohammadi, and Sindri Magn\'usson
- Abstract要約: 強化学習(RL)は、機械学習におけるシーケンスベースのタスクを解決するための一般的なアプローチとして登場した。
注目を集めたそのような代替手段の1つは、汎用的な認知推論フレームワークである非軸性推論システム(NARS)である。
本稿では,シークエンスに基づく課題の解決におけるRLの代替として,NARSの可能性を探究する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, reinforcement learning (RL) has emerged as a popular
approach for solving sequence-based tasks in machine learning. However, finding
suitable alternatives to RL remains an exciting and innovative research area.
One such alternative that has garnered attention is the Non-Axiomatic Reasoning
System (NARS), which is a general-purpose cognitive reasoning framework. In
this paper, we delve into the potential of NARS as a substitute for RL in
solving sequence-based tasks. To investigate this, we conduct a comparative
analysis of the performance of ONA as an implementation of NARS and
$Q$-Learning in various environments that were created using the Open AI gym.
The environments have different difficulty levels, ranging from simple to
complex. Our results demonstrate that NARS is a promising alternative to RL,
with competitive performance in diverse environments, particularly in
non-deterministic ones.
- Abstract(参考訳): 近年、強化学習(RL)は、機械学習におけるシーケンスベースのタスクを解くための一般的なアプローチとして現れている。
しかし、RLの適切な代替品を見つけることは、エキサイティングで革新的な研究分野である。
注目を集めた一つの代替手段は、汎用的な認知推論フレームワークである非軸性推論システム(NARS)である。
本稿では,シークエンスに基づく課題解決におけるRLの代替として,NARSの可能性を探る。
そこで我々は,オープンAIジムを用いて作成した各種環境におけるNARSとQ$ラーニングの実装として,ONAの性能の比較分析を行った。
環境の難易度は単純から複雑まで様々である。
その結果,NARSは多様な環境,特に非決定論的環境において,RLに代わる有望な代替手段であることが示された。
関連論文リスト
- ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
我々は、オフダイナミックスRL法を評価するための最初のベンチマークであるODRLを紹介する。
ODRLには、4つの実験的な設定が含まれており、ソースドメインとターゲットドメインはオンラインまたはオフラインにすることができる。
我々は、様々な力学シフトにまたがる普遍的な優位性を持つ手法が存在しないことを示す広範なベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-10-28T05:29:38Z) - Multi-turn Reinforcement Learning from Preference Human Feedback [41.327438095745315]
RLHF(Reinforcement Learning from Human Feedback)は、大規模言語モデルと人間の嗜好を整合させる標準的なアプローチとなっている。
既存のメソッドは、選好を単一の決定(ターン)レベルでエミュレートすることで機能する。
本研究では,2つの全会話間の嗜好フィードバックから強化学習のための新しい手法を開発する。
論文 参考訳(メタデータ) (2024-05-23T14:53:54Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Pretraining in Deep Reinforcement Learning: A Survey [17.38360092869849]
事前訓練は伝達可能な知識の獲得に有効であることが示されている。
強化学習の性質から, この分野でのプレトレーニングには, 独特な課題が伴う。
論文 参考訳(メタデータ) (2022-11-08T02:17:54Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な制御タスクを解決するために神経ポリシーをトレーニングするための強力なパラダイムとして登場した。
品質多様性(QD)手法は,スキル発見のための情報理論強化RLの代替手段であることを示す。
論文 参考訳(メタデータ) (2022-10-06T11:06:39Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
本稿では,課題学習の目的を課題(あるいは課題の集合)の目的にシフトさせるメタラーニング手法を提案する。
我々のモデルであるREIN-2は、RLフレームワーク内で構成されたメタ学習スキームであり、その目的は、他のRLエージェントの作り方を学ぶメタRLエージェントを開発することである。
従来の最先端のDeep RLアルゴリズムと比較して、実験結果は、人気のあるOpenAI Gym環境において、我々のモデルの顕著な性能を示している。
論文 参考訳(メタデータ) (2021-10-11T10:13:49Z) - An Efficient Application of Neuroevolution for Competitive Multiagent
Learning [0.0]
NEATは、最高のパフォーマンスのニューラルネットワークアーキテクチャを得るために使われる一般的な進化戦略である。
本稿では, NEATアルゴリズムを用いて, 変形したポンポンゲーム環境において, 競争力のあるマルチエージェント学習を実現する。
論文 参考訳(メタデータ) (2021-05-23T10:34:48Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - The NetHack Learning Environment [79.06395964379107]
本稿では、強化学習研究のための手続き的に生成されたローグのような環境であるNetHack Learning Environment(NLE)を紹介する。
我々は,NetHackが,探索,計画,技術習得,言語条件付きRLといった問題に対する長期的な研究を促進するのに十分複雑であると主張している。
我々は,分散されたDeep RLベースラインとランダムネットワーク蒸留探索を用いて,ゲームの初期段階における実験的な成功を示す。
論文 参考訳(メタデータ) (2020-06-24T14:12:56Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
本稿では,頑健な強化学習(RL)エージェントを訓練する難しい課題に取り組むために,サンプリング視点を導入する。
本稿では,2人プレイヤポリシー手法のサンプリング版である,スケーラブルな2人プレイヤRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-14T14:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。