論文の概要: Pretraining in Deep Reinforcement Learning: A Survey
- arxiv url: http://arxiv.org/abs/2211.03959v1
- Date: Tue, 8 Nov 2022 02:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 15:26:23.252852
- Title: Pretraining in Deep Reinforcement Learning: A Survey
- Title(参考訳): 深層強化学習における事前学習:調査
- Authors: Zhihui Xie, Zichuan Lin, Junyou Li, Shuai Li, Deheng Ye
- Abstract要約: 事前訓練は伝達可能な知識の獲得に有効であることが示されている。
強化学習の性質から, この分野でのプレトレーニングには, 独特な課題が伴う。
- 参考スコア(独自算出の注目度): 17.38360092869849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The past few years have seen rapid progress in combining reinforcement
learning (RL) with deep learning. Various breakthroughs ranging from games to
robotics have spurred the interest in designing sophisticated RL algorithms and
systems. However, the prevailing workflow in RL is to learn tabula rasa, which
may incur computational inefficiency. This precludes continuous deployment of
RL algorithms and potentially excludes researchers without large-scale
computing resources. In many other areas of machine learning, the pretraining
paradigm has shown to be effective in acquiring transferable knowledge, which
can be utilized for a variety of downstream tasks. Recently, we saw a surge of
interest in Pretraining for Deep RL with promising results. However, much of
the research has been based on different experimental settings. Due to the
nature of RL, pretraining in this field is faced with unique challenges and
hence requires new design principles. In this survey, we seek to systematically
review existing works in pretraining for deep reinforcement learning, provide a
taxonomy of these methods, discuss each sub-field, and bring attention to open
problems and future directions.
- Abstract(参考訳): 近年,強化学習(RL)と深層学習の組み合わせが急速に進展している。
ゲームからロボットまで様々なブレークスルーが、高度なrlアルゴリズムやシステムの設計に興味を惹きつけている。
しかし、RLの一般的なワークフローは、計算の非効率性を引き起こす可能性のあるタブララザを学習することである。
これにより、RLアルゴリズムの継続的展開を防ぎ、大規模コンピューティングリソースを持たない研究者を排除できる可能性がある。
機械学習の他の多くの分野において、事前学習パラダイムは、様々な下流タスクに使用できる伝達可能な知識の獲得に有効であることが示されている。
近年,Deep RLの事前学習への関心が高まっており,有望な結果が得られている。
しかし、研究の多くは異なる実験環境に基づいている。
RLの性質のため、この分野での事前訓練には固有の課題があり、そのため新しい設計原則が必要である。
本研究は,深層強化学習のための事前学習における既存研究の体系的見直し,これらの手法の分類,各サブフィールドの議論,オープン問題と今後の方向性について注目することを目的とする。
関連論文リスト
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
論文 参考訳(メタデータ) (2024-11-19T01:23:52Z) - Evolutionary Reinforcement Learning: A Survey [31.112066295496003]
強化学習(Reinforcement Learning、RL)は、エージェントが環境とのインタラクションを通じて累積報酬を最大化するように訓練する機械学習アプローチである。
本稿では、進化強化学習(EvoRL)と呼ばれる、ECをRLに統合するための最先端手法に関する総合的な調査を紹介する。
論文 参考訳(メタデータ) (2023-03-07T01:38:42Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - A Survey on Explainable Reinforcement Learning: Concepts, Algorithms,
Challenges [38.70863329476517]
強化学習(Reinforcement Learning, RL)は、インテリジェントエージェントが環境と対話して長期的な目標を達成する、一般的な機械学習パラダイムである。
励ましの結果にもかかわらず、ディープニューラルネットワークベースのバックボーンは、専門家が高いセキュリティと信頼性が不可欠である現実的なシナリオにおいて、訓練されたエージェントを信頼し、採用することを妨げるブラックボックスとして広く見なされている。
この問題を緩和するために、本質的な解釈可能性やポストホックな説明可能性を構築することにより、知的エージェントの内部動作に光を放つための大量の文献が提案されている。
論文 参考訳(メタデータ) (2022-11-12T13:52:06Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - A Survey on Offline Reinforcement Learning: Taxonomy, Review, and Open
Problems [0.0]
強化学習(RL)は、急速に人気が高まっている。
高いコストと環境との相互作用の危険性のため、RLにはアクセスできない領域がまだ広い範囲にある。
オフラインRLは、以前に収集されたインタラクションの静的データセットからのみ学習するパラダイムである。
論文 参考訳(メタデータ) (2022-03-02T20:05:11Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
AutoRL(Automated Reinforcement Learning)には、AutoMLの標準的なアプリケーションだけでなく、RL特有の課題も含まれている。
我々は共通の分類法を提供し、各領域を詳細に議論し、今後の研究者にとって関心のあるオープンな問題を提起する。
論文 参考訳(メタデータ) (2022-01-11T12:41:43Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - Distributed Deep Reinforcement Learning: An Overview [0.0]
本稿では,DRLにおける分散アプローチの役割について調査する。
本稿では,DRLにおける分散手法の活用方法に大きな影響を与える重要な研究成果について概説する。
また,これらの手法を異なるタスクで評価し,その性能を1人のアクターと学習者エージェントで比較する。
論文 参考訳(メタデータ) (2020-11-22T13:24:35Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Trying AGAIN instead of Trying Longer: Prior Learning for Automatic
Curriculum Learning [39.489869446313065]
Deep RL(DRL)コミュニティにおける大きな課題は、見えない状況に対して汎用的なエージェントを訓練することである。
そこで本研究では,(1)教師アルゴリズムがDRLエージェントを高探索カリキュラムで学習し,(2)初回から学習した前処理を蒸留して「専門カリキュラム」を生成する2段階のACLアプローチを提案する。
本研究の目的は,最先端技術に対する平均50%の改善を示すことに加えて,複数の学習者を対象としたACL技術の改良を指向した新たな研究方向性の第一の例を示すことである。
論文 参考訳(メタデータ) (2020-04-07T07:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。