On the Robustness of ChatGPT: An Adversarial and Out-of-distribution
Perspective
- URL: http://arxiv.org/abs/2302.12095v5
- Date: Tue, 29 Aug 2023 05:34:25 GMT
- Title: On the Robustness of ChatGPT: An Adversarial and Out-of-distribution
Perspective
- Authors: Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong
Wang, Linyi Yang, Haojun Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang,
Xing Xie
- Abstract summary: We evaluate the robustness of ChatGPT from the adversarial and out-of-distribution perspective.
Results show consistent advantages on most adversarial and OOD classification and translation tasks.
ChatGPT shows astounding performance in understanding dialogue-related texts.
- Score: 67.98821225810204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ChatGPT is a recent chatbot service released by OpenAI and is receiving
increasing attention over the past few months. While evaluations of various
aspects of ChatGPT have been done, its robustness, i.e., the performance to
unexpected inputs, is still unclear to the public. Robustness is of particular
concern in responsible AI, especially for safety-critical applications. In this
paper, we conduct a thorough evaluation of the robustness of ChatGPT from the
adversarial and out-of-distribution (OOD) perspective. To do so, we employ the
AdvGLUE and ANLI benchmarks to assess adversarial robustness and the Flipkart
review and DDXPlus medical diagnosis datasets for OOD evaluation. We select
several popular foundation models as baselines. Results show that ChatGPT shows
consistent advantages on most adversarial and OOD classification and
translation tasks. However, the absolute performance is far from perfection,
which suggests that adversarial and OOD robustness remains a significant threat
to foundation models. Moreover, ChatGPT shows astounding performance in
understanding dialogue-related texts and we find that it tends to provide
informal suggestions for medical tasks instead of definitive answers. Finally,
we present in-depth discussions of possible research directions.
Related papers
- Unveiling the Achilles' Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models [52.368110271614285]
We introduce AdvEval, a novel black-box adversarial framework against NLG evaluators.
AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators.
We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation.
arXiv Detail & Related papers (2024-05-23T14:48:15Z) - Large Language Models Meet Open-World Intent Discovery and Recognition:
An Evaluation of ChatGPT [37.27411474856601]
Out-of-domain (OOD) intent discovery and generalized intent discovery (GID) aim to extend a closed intent to open-world intent sets.
Previous methods address them by fine-tuning discriminative models.
ChatGPT exhibits consistent advantages under zero-shot settings, but is still at a disadvantage compared to fine-tuned models.
arXiv Detail & Related papers (2023-10-16T08:34:44Z) - Leveraging Large Language Models for Automated Dialogue Analysis [12.116834890063146]
This paper investigates the ability of a state-of-the-art large language model (LLM), ChatGPT-3.5, to perform dialogue behavior detection for nine categories in real human-bot dialogues.
Our findings reveal that neither specialized models nor ChatGPT have yet achieved satisfactory results for this task, falling short of human performance.
arXiv Detail & Related papers (2023-09-12T18:03:55Z) - "HOT" ChatGPT: The promise of ChatGPT in detecting and discriminating
hateful, offensive, and toxic comments on social media [2.105577305992576]
Generative AI models have the potential to understand and detect harmful content.
ChatGPT can achieve an accuracy of approximately 80% when compared to human annotations.
arXiv Detail & Related papers (2023-04-20T19:40:51Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
This research examines the responses generated by ChatGPT from different Conversational QA corpora.
The study employed BERT similarity scores to compare these responses with correct answers and obtain Natural Language Inference(NLI) labels.
The study identified instances where ChatGPT provided incorrect answers to questions, providing insights into areas where the model may be prone to error.
arXiv Detail & Related papers (2023-04-06T18:42:47Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - Consistency Analysis of ChatGPT [65.268245109828]
This paper investigates the trustworthiness of ChatGPT and GPT-4 regarding logically consistent behaviour.
Our findings suggest that while both models appear to show an enhanced language understanding and reasoning ability, they still frequently fall short of generating logically consistent predictions.
arXiv Detail & Related papers (2023-03-11T01:19:01Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
We provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric.
Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments.
We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
arXiv Detail & Related papers (2023-03-07T16:57:20Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT)
We examined ChatGPT's capabilities on 25 diverse analytical NLP tasks.
We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses.
arXiv Detail & Related papers (2023-02-21T15:20:37Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
ChatGPT has attracted great attention, as it can generate fluent and high-quality responses to human inquiries.
We evaluate ChatGPT's understanding ability by evaluating it on the most popular GLUE benchmark, and comparing it with 4 representative fine-tuned BERT-style models.
We find that: 1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT achieves comparable performance compared with BERT on sentiment analysis and question answering tasks.
arXiv Detail & Related papers (2023-02-19T12:29:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.