論文の概要: Toward Unsupervised 3D Point Cloud Anomaly Detection using Variational
Autoencoder
- arxiv url: http://arxiv.org/abs/2304.03420v1
- Date: Fri, 7 Apr 2023 00:02:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-10 13:22:14.125577
- Title: Toward Unsupervised 3D Point Cloud Anomaly Detection using Variational
Autoencoder
- Title(参考訳): 変分オートエンコーダを用いた教師なし3次元点雲異常検出に向けて
- Authors: Mana Masuda, Ryo Hachiuma, Ryo Fujii, Hideo Saito, Yusuke Sekikawa
- Abstract要約: 本稿では3次元点雲に対するエンドツーエンドの教師なし異常検出フレームワークを提案する。
本稿では,3次元点群に適応した深部変分自動エンコーダに基づく非教師なし異常検出ネットワークと,特に3次元点群に対する異常スコアを提案する。
- 参考スコア(独自算出の注目度): 10.097126085083827
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we present an end-to-end unsupervised anomaly detection
framework for 3D point clouds. To the best of our knowledge, this is the first
work to tackle the anomaly detection task on a general object represented by a
3D point cloud. We propose a deep variational autoencoder-based unsupervised
anomaly detection network adapted to the 3D point cloud and an anomaly score
specifically for 3D point clouds. To verify the effectiveness of the model, we
conducted extensive experiments on the ShapeNet dataset. Through quantitative
and qualitative evaluation, we demonstrate that the proposed method outperforms
the baseline method. Our code is available at
https://github.com/llien30/point_cloud_anomaly_detection.
- Abstract(参考訳): 本稿では,3次元点雲に対するエンドツーエンドの教師なし異常検出フレームワークを提案する。
我々の知る限りでは、これは3Dポイントクラウドで表される一般的なオブジェクト上の異常検出タスクに取り組む最初の作業である。
本稿では,3dポイントクラウドに適応した,可変オートエンコーダに基づく教師なし異常検出ネットワークと,3dポイントクラウドに特化した異常スコアを提案する。
モデルの有効性を検証するため,shapenetデータセットについて広範な実験を行った。
定量的および質的評価により,提案手法がベースライン法より優れていることを示す。
私たちのコードはhttps://github.com/llien30/point_cloud_anomaly_detectionで利用可能です。
関連論文リスト
- Towards Scalable 3D Anomaly Detection and Localization: A Benchmark via
3D Anomaly Synthesis and A Self-Supervised Learning Network [22.81108868492533]
本稿では,既存の大規模3次元モデルに適応して3次元異常検出を行うための3次元異常合成パイプラインを提案する。
Anomaly-ShapeNetは、40カテゴリ以下の1600点のクラウドサンプルで構成され、リッチで多様なデータ収集を提供する。
また、3次元異常局所化のためのスケーラブルな表現学習を可能にする自己教師型マスク再構成ネットワーク(IMRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-25T01:45:09Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z) - 3D Cascade RCNN: High Quality Object Detection in Point Clouds [122.42455210196262]
本稿では3次元カスケードRCNNを提案する。これはカスケードパラダイムにおいて、酸化点雲に基づいて複数の検出器を割り当てる。
提案する3次元カスケードRCNNは,最先端の3次元物体検出技術と比較した場合の優位性を検証した。
論文 参考訳(メタデータ) (2022-11-15T15:58:36Z) - 3DVerifier: Efficient Robustness Verification for 3D Point Cloud Models [17.487852393066458]
既存のポイントクラウドモデルの検証手法は,大規模ネットワーク上で時間的・計算的に実現不可能である。
本稿では,2つの問題に対処する3DVerifierを提案し,線形緩和関数を適用して乗算層を結合し,前方と後方の伝搬を結合する。
提案手法は,大規模ネットワークにおける検証効率のオーダー・オブ・マグニチュード向上を実現し,得られた認証境界も最先端の検証器よりもかなり厳密である。
論文 参考訳(メタデータ) (2022-07-15T15:31:16Z) - Deep Point Cloud Reconstruction [74.694733918351]
3Dスキャンから得られる点雲は、しばしばスパース、ノイズ、不規則である。
これらの問題に対処するため、最近の研究は別々に行われ、不正確な点雲を密度化、復調し、完全な不正確な点雲を観測している。
本研究では,1) 初期密度化とデノナイズのための3次元スパース集積時間ガラスネットワーク,2) 離散ボクセルを3Dポイントに変換するトランスフォーマーによる改良,の2段階からなる深部点雲再構成ネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-23T07:53:28Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
我々は、点雲をアンカーフリーで検出する新しい1段3次元検出器を開発した。
ボクセルをベースとしたスパース3D特徴量からスパース2D特徴量マップに変換することでこれを克服する。
検出信頼度スコアとバウンディングボックス回帰の精度との相関性を改善するために,IoUに基づく検出信頼度再校正手法を提案する。
論文 参考訳(メタデータ) (2021-08-08T13:42:13Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection [0.0]
本稿では,LiDARスキャンにおける物体検出のためのグラフニューラルネットワーク(GNN)における注目に基づく特徴集約手法を提案する。
GNNの各層では、ノードごとの入力特徴を対応する上位特徴にマッピングする線形変換とは別に、ノードごとの注意を隠蔽する。
KITTIデータセットを用いた実験により,本手法は3次元物体検出に匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2020-09-17T12:56:17Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
動的情報モデリングを用いた新しい3次元オブジェクト検出フレームワークを提案する。
粗い予測は、ボクセルベースの領域提案ネットワークを介して第1段階で生成される。
大規模なnuScenes 3D検出ベンチマークで実験を行った。
論文 参考訳(メタデータ) (2020-07-16T18:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。