論文の概要: Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2009.08253v1
- Date: Thu, 17 Sep 2020 12:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 08:43:11.629510
- Title: Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection
- Title(参考訳): 3次元物体検出のためのグラフニューラルネットワークの動的エッジ重み付け
- Authors: Sumesh Thakur and Jiju Peethambaran
- Abstract要約: 本稿では,LiDARスキャンにおける物体検出のためのグラフニューラルネットワーク(GNN)における注目に基づく特徴集約手法を提案する。
GNNの各層では、ノードごとの入力特徴を対応する上位特徴にマッピングする線形変換とは別に、ノードごとの注意を隠蔽する。
KITTIデータセットを用いた実験により,本手法は3次元物体検出に匹敵する結果が得られることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A robust and accurate 3D detection system is an integral part of autonomous
vehicles. Traditionally, a majority of 3D object detection algorithms focus on
processing 3D point clouds using voxel grids or bird's eye view (BEV). Recent
works, however, demonstrate the utilization of the graph neural network (GNN)
as a promising approach to 3D object detection. In this work, we propose an
attention based feature aggregation technique in GNN for detecting objects in
LiDAR scan. We first employ a distance-aware down-sampling scheme that not only
enhances the algorithmic performance but also retains maximum geometric
features of objects even if they lie far from the sensor. In each layer of the
GNN, apart from the linear transformation which maps the per node input
features to the corresponding higher level features, a per node masked
attention by specifying different weights to different nodes in its first ring
neighborhood is also performed. The masked attention implicitly accounts for
the underlying neighborhood graph structure of every node and also eliminates
the need of costly matrix operations thereby improving the detection accuracy
without compromising the performance. The experiments on KITTI dataset show
that our method yields comparable results for 3D object detection.
- Abstract(参考訳): 堅牢で正確な3D検出システムは、自動運転車の不可欠な部分である。
伝統的に、ほとんどの3Dオブジェクト検出アルゴリズムは、ボクセルグリッドや鳥の目視(BEV)を使用して3Dポイントクラウドを処理することに重点を置いている。
しかし、最近の研究は、グラフニューラルネットワーク(GNN)を3Dオブジェクト検出への有望なアプローチとして活用することを実証している。
本稿では,LiDARスキャンにおける物体検出のための注意に基づく特徴集約手法をGNNで提案する。
我々はまず,アルゴリズム性能を向上するだけでなく,センサから遠ざかっても物体の最大幾何学的特徴を維持できる距離対応ダウンサンプリング方式を用いる。
また、gnnの各層において、ノード毎の入力特徴を対応する高レベル特徴にマッピングする線形変換とは別に、第1リング近傍の異なるノードに対して異なる重みを指定することにより、ノード毎の注目をマスキングする。
マスクされた注意は、各ノードの下位の近傍グラフ構造を暗黙的に説明し、またコストのかかるマトリックス操作の必要性をなくし、性能を損なうことなく検出精度を向上させる。
kittiデータセットを用いた実験により, 3次元物体検出に匹敵する結果が得られた。
関連論文リスト
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3Dオブジェクト検出は、複雑なトレーニングとテストパイプラインを伴うことが多い。
近年,非最大抑圧型2次元物体検出モデルに着想を得て,点雲上の3次元物体検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-10-13T17:59:38Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3Dオブジェクト検出手法は、シーン内の3Dオブジェクトを表現するために、ボクセルベースまたはポイントベースの特徴を利用する。
本稿では,voxelベースとポイントベースの両方の特徴を有する,新しい単段3次元検出手法を提案する。
論文 参考訳(メタデータ) (2021-04-02T06:34:49Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
点雲からの3次元物体検出における教師なし領域適応のための新しい領域適応型自己学習パイプラインST3Dを提案する。
当社のST3Dは、評価されたすべてのデータセットで最先端のパフォーマンスを達成し、KITTI 3Dオブジェクト検出ベンチマークで完全に監視された結果を超えます。
論文 参考訳(メタデータ) (2021-03-09T10:51:24Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3Dオブジェクト検出は、ロボット工学や拡張現実など多くの有望な分野に適用可能であるため、広く研究されている。
しかし、3Dデータのまばらな性質は、このタスクに固有の課題をもたらしている。
本稿では,完全畳み込み単一ショットスパース検出ネットワークであるGenerative Sparse Detection Network (GSDN)を提案する。
論文 参考訳(メタデータ) (2020-06-22T15:54:24Z) - SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection
from Point Clouds [8.906003527848636]
生のLIDARデータから同等の3D検出タスクを実現するために,Sparse Voxel-Graph Attention Network (SVGA-Net)を提案する。
SVGA-Netは、分割された3次元球面ボクセルと、すべてのボクセルを通してグローバルなKNNグラフ内の局所完備グラフを構成する。
KITTI検出ベンチマークの実験は、グラフ表現を3次元オブジェクト検出に拡張する効率を実証している。
論文 参考訳(メタデータ) (2020-06-07T05:01:06Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
LIDARデータに対する高速な1段3次元物体検出法を提案する。
我々の手法の中核となる新規性は高速かつシングルパスアーキテクチャであり、どちらも3次元の物体を検出し、それらの形状を推定する。
提案手法は,ScanNetシーンのオブジェクト検出で5%,オープンデータセットでは3.4%の精度で結果が得られた。
論文 参考訳(メタデータ) (2020-04-02T17:48:50Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
3Dの向きとオブジェクトの変換を推定することは、インフラストラクチャレスの自律走行と運転に不可欠である。
SMOKEと呼ばれる新しい3次元オブジェクト検出手法を提案する。
構造的単純さにもかかわらず、提案するSMOKEネットワークは、KITTIデータセット上の既存のモノクル3D検出方法よりも優れている。
論文 参考訳(メタデータ) (2020-02-24T08:15:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。