A decoherence-based approach to the classical limit in Bohm's theory
- URL: http://arxiv.org/abs/2304.03423v1
- Date: Fri, 7 Apr 2023 00:30:30 GMT
- Title: A decoherence-based approach to the classical limit in Bohm's theory
- Authors: Davide Romano
- Abstract summary: The de Broglie-Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit.
The quantum-to-classical transition is based on three steps.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper explains why the de Broglie-Bohm theory reduces to Newtonian
mechanics in the macroscopic classical limit. The quantum-to-classical
transition is based on three steps: (i) interaction with the environment
produces effectively factorized states, leading to the formation of effective
wave functions and hence decoherence; (ii) the effective wave functions
selected by the environment--the pointer states of decoherence theory--will be
well-localized wave packets, typically Gaussian states; (iii) the quantum
potential of a Gaussian state becomes negligible under standard classicality
conditions; therefore, the effective wave function will move according to
Newtonian mechanics in the correct classical limit. As a result, a Bohmian
system in interaction with the environment will be described by an effective
Gaussian state and--when the system is macroscopic--it will move according to
Newtonian mechanics.
Related papers
- Generalization of Bohmian Mechanics and Quantum Gravity Effective Action [55.2480439325792]
We generalize the de Broglie-Bohm (dBB) formulation of quantum mechanics to the case of quantum gravity (QG)<n>This is done by replacing the dBB equations of motion with the effective action equations of motion, which is beneficial even in the non-gravitational case.<n>Another advantage of the effective action formalism is that one can obtain the field configurations in the case of a quantum field theory.
arXiv Detail & Related papers (2025-05-06T08:38:03Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.
We show that no such simulation exists, thereby certifying quantum coherence.
Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Convergence to Bohmian mechanics in a de Broglie-like pilot-wave system [0.0]
We present a general result that bridges Bohmian mechanics with classical pilot-wave theory.
We show that, with a different choice of coupling, their de Broglie-like system reduces exactly to single-particle Bohmian mechanics in the non-relativistic limit.
arXiv Detail & Related papers (2024-08-10T00:57:47Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - From integrability to chaos: the quantum-classical correspondence in a triple well bosonic model [0.0]
We investigate the semiclassical limit of a bosonic quantum many-body system exhibiting both integrable and chaotic behavior.
The transition from regularity to chaos in classical dynamics is visualized through Poincar'e sections.
The study systematically establishes quantum-classical correspondence for a bosonic many-body system with more than two wells.
arXiv Detail & Related papers (2023-11-22T06:31:00Z) - On the universality of minimum uncertainty states as approximate
classical states [0.0]
Coherent states have been regarded as the closest to the classical.
Decoherence theory defines, in idealistic scenarios, its own preferred, robust states.
We show that these two notions are in general different.
arXiv Detail & Related papers (2022-12-19T19:02:28Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Coherent control of quantum topological states of light in Fock-state
lattices [21.686661584999964]
We implement experiments on topological states of quantized light in a superconducting circuit.
We construct one and two-dimensional Fock-state lattices where topological transport of zero-energy states, strain induced pseudo-Landau levels, valley Hall effect and Haldane chiral edge currents are demonstrated.
Our study extends the topological states of light to the quantum regime, bridges topological phases of condensed matter physics with circuit quantum electrodynamics, and offers a new freedom in controlling the quantum states of multiple resonators.
arXiv Detail & Related papers (2022-08-06T06:43:49Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Making squeezed-coherent states concrete by determining their
wavefunction [0.0]
We show three different ways to construct the wavefunction for squeezed-coherent states.
We hope that working with the wavefunction will help demystify the concept of a squeezed-coherent state.
arXiv Detail & Related papers (2021-04-22T23:13:48Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Gravitational reduction of the wave function based on Bohmian quantum
potential [0.0]
In objective gravitational reduction of the wave function of a quantum system, the classical limit of the system is obtained in terms of the objective properties of the system.
In Bohmian quantum mechanics the usual criterion for getting classical limit is the vanishing of the quantum potential or the quantum force of the system.
An interesting connection will be made between Bohmian concepts and gravitational concepts.
arXiv Detail & Related papers (2020-01-07T06:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.