Convergence to Bohmian mechanics in a de Broglie-like pilot-wave system
- URL: http://arxiv.org/abs/2408.05396v1
- Date: Sat, 10 Aug 2024 00:57:47 GMT
- Title: Convergence to Bohmian mechanics in a de Broglie-like pilot-wave system
- Authors: David Darrow,
- Abstract summary: We present a general result that bridges Bohmian mechanics with classical pilot-wave theory.
We show that, with a different choice of coupling, their de Broglie-like system reduces exactly to single-particle Bohmian mechanics in the non-relativistic limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bohmian mechanics supplements the quantum wavefunction with deterministic particle trajectories, offering an alternate, dynamical language for quantum theory. However, the Bohmian particle does not affect its guiding wave, so the wave field must instead be prescribed by the system geometry. While this property is widely assumed necessary to ensure agreement with quantum mechanics, much work has recently been dedicated to understanding classical pilot-wave systems, which feature a two-way coupling between particle and wave. These systems, including the "walking droplet" system of Couder and Fort (2006) and its various abstractions, allow us to investigate the limits of classical systems and offer a touchstone between quantum and classical dynamics. In this work, we present a general result that bridges Bohmian mechanics with this classical pilot-wave theory. Namely, Darrow and Bush (2024) recently introduced a Lagrangian pilot-wave framework to study quantum-like behaviours in classical systems; with a particular choice of particle-wave coupling, they recover key dynamics hypothesised in de Broglie's early "double-solution" theory. We here show that, with a different choice of coupling, their de Broglie-like system reduces exactly to single-particle Bohmian mechanics in the non-relativistic limit. Finally, we present an application of the present work in developing an analogue for position measurement in a de Broglie-like setting.
Related papers
- Revisiting de Broglie's Double-Solution Pilot-Wave Theory with a Lorentz-Covariant Lagrangian Framework [0.0]
We introduce a rich family of pilot-wave systems, with a view to reformulating de Broglie's double-solution program.
Notably, the entire family is local and Lorentz-invariant.
We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory.
arXiv Detail & Related papers (2024-08-13T15:29:18Z) - Heisenberg dynamics of mixed quantum-classical systems [0.0]
Mixed quantum-classical systems involve the interplay of unitary operators acting on the quantum observables and the Lagrangian trajectories.
This interplay reflects an intricate structure which is made particularly challenging by the backreaction excerpted on the classical trajectories by the quantum degrees of freedom.
arXiv Detail & Related papers (2024-05-17T09:36:03Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Bohm's quantum "non-mechanics": An alternative quantum theory with its
own ontology? [0.0]
Bohmian mechanics allows us to establish a direct link between the dynamics exhibited by quantum systems and the local variations of the quantum phase associated with their state.
This goes beyond the passive role typically assigned to this field in Bohmian mechanics, where traditionally trajectories and quantum potentials have received more attention instead.
arXiv Detail & Related papers (2021-05-13T09:31:02Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z) - Gravitational reduction of the wave function based on Bohmian quantum
potential [0.0]
In objective gravitational reduction of the wave function of a quantum system, the classical limit of the system is obtained in terms of the objective properties of the system.
In Bohmian quantum mechanics the usual criterion for getting classical limit is the vanishing of the quantum potential or the quantum force of the system.
An interesting connection will be made between Bohmian concepts and gravitational concepts.
arXiv Detail & Related papers (2020-01-07T06:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.