論文の概要: Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts
- arxiv url: http://arxiv.org/abs/2304.03440v1
- Date: Fri, 7 Apr 2023 01:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-10 13:12:03.577138
- Title: Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts
- Title(参考訳): 分布シフトの類似性を考慮した教師付きコントラスト学習
- Authors: Takuro Kutsuna
- Abstract要約: 本稿では,教師付きコントラスト学習を用いた新たな正規化手法を提案する。
サブポピュレーションシフトや領域一般化などの分布シフトをエミュレートするベンチマークデータセットの実験は,提案手法の利点を実証している。
- 参考スコア(独自算出の注目度): 3.7819322027528113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distribution shifts are problems where the distribution of data changes
between training and testing, which can significantly degrade the performance
of a model deployed in the real world. Recent studies suggest that one reason
for the degradation is a type of overfitting, and that proper regularization
can mitigate the degradation, especially when using highly representative
models such as neural networks. In this paper, we propose a new regularization
using the supervised contrastive learning to prevent such overfitting and to
train models that do not degrade their performance under the distribution
shifts. We extend the cosine similarity in contrastive loss to a more general
similarity measure and propose to use different parameters in the measure when
comparing a sample to a positive or negative example, which is analytically
shown to act as a kind of margin in contrastive loss. Experiments on benchmark
datasets that emulate distribution shifts, including subpopulation shift and
domain generalization, demonstrate the advantage of the proposed method over
existing regularization methods.
- Abstract(参考訳): 分散シフトは、トレーニングとテストの間のデータの分散が変化する問題であり、現実世界にデプロイされたモデルの性能が著しく低下する可能性がある。
最近の研究では、劣化の理由の一つは過剰フィッティングの一種であり、適切な正則化は、特にニューラルネットワークのような高度に代表されるモデルを用いることで劣化を緩和できることが示唆されている。
本稿では,教師付きコントラスト学習を用いた新たな正規化手法を提案する。
比較損失におけるコサイン類似度を、より一般的な類似度尺度に拡張し、サンプルを正あるいは負の例と比較する際に、異なるパラメータを使用することを提案する。
サブポピュレーションシフトやドメイン一般化を含む分布シフトをエミュレートするベンチマークデータセットの実験は、既存の正規化法よりも提案手法の利点を示している。
関連論文リスト
- Protected Test-Time Adaptation via Online Entropy Matching: A Betting Approach [14.958884168060097]
オンライン自己学習によるテスト時間適応のための新しい手法を提案する。
提案手法は,マーチンガレットとオンライン学習の概念を組み合わせることで,分布変化に反応可能な検出ツールを構築する。
実験結果から, 分散シフト時のテスト時間精度は, 精度とキャリブレーションを保ちながら向上することが示された。
論文 参考訳(メタデータ) (2024-08-14T12:40:57Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
論文 参考訳(メタデータ) (2023-12-21T23:20:47Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation [24.794022951873156]
我々は、アライメント、均一性、相関(PAUC)を通して、プロトタイプ表現を学ぶことを提案する。
具体的には,(1)正の原型から埋め込みを抽出するアライメント損失,(2)原型レベルの特徴を均一に分配するアライメント損失,(3)原型レベルの特徴間の多様性と識別性を増大させる相関損失を補正する。
論文 参考訳(メタデータ) (2022-10-18T22:33:12Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Hard Negative Sampling via Regularized Optimal Transport for Contrastive
Representation Learning [13.474603286270836]
本研究では、教師なしコントラスト表現学習のためのハードネガティブサンプリング分布の設計問題について検討する。
本稿では,最大(Worst-case)一般化されたコントラスト学習損失を最小限に抑える表現を求める新しいmin-maxフレームワークの提案と解析を行う。
論文 参考訳(メタデータ) (2021-11-04T21:25:24Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
変数ドメインとバイアス付きデータセットは、トレーニングとターゲット分布の違いにつながる可能性がある。
これを緩和するための現在のアプローチは、しばしばトレーニングとターゲット確率密度関数の比率を推定することに依存する。
論文 参考訳(メタデータ) (2020-10-23T22:13:00Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。