論文の概要: Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective
- arxiv url: http://arxiv.org/abs/2312.14329v1
- Date: Thu, 21 Dec 2023 23:20:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:37:25.048242
- Title: Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective
- Title(参考訳): 分布シフト下における不変異常検出:因果的視点
- Authors: Jo\~ao B. S. Carvalho, Mengtao Zhang, Robin Geyer, Carlos Cotrini,
Joachim M. Buhmann
- Abstract要約: 異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
- 参考スコア(独自算出の注目度): 6.845698872290768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection (AD) is the machine learning task of identifying highly
discrepant abnormal samples by solely relying on the consistency of the normal
training samples. Under the constraints of a distribution shift, the assumption
that training samples and test samples are drawn from the same distribution
breaks down. In this work, by leveraging tools from causal inference we attempt
to increase the resilience of anomaly detection models to different kinds of
distribution shifts. We begin by elucidating a simple yet necessary statistical
property that ensures invariant representations, which is critical for robust
AD under both domain and covariate shifts. From this property, we derive a
regularization term which, when minimized, leads to partial distribution
invariance across environments. Through extensive experimental evaluation on
both synthetic and real-world tasks, covering a range of six different AD
methods, we demonstrated significant improvements in out-of-distribution
performance. Under both covariate and domain shift, models regularized with our
proposed term showed marked increased robustness. Code is available at:
https://github.com/JoaoCarv/invariant-anomaly-detection.
- Abstract(参考訳): 異常検出(anomaly detection, aad)は、正常なトレーニングサンプルの一貫性のみを頼りに異常サンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
本研究では,因果推論からツールを活用することで,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとする。
まず、整域と共変量シフトの両方においてロバスト ad にとって重要である不変表現を保証する単純で必要な統計特性を解明する。
この性質から、最小化されると環境間の部分分布不変性をもたらす正規化項を導出する。
6種類の異なる広告方法をカバーする合成および実世界のタスクを広範囲に実験的に評価した結果,分散性能が大幅に向上した。
共変量とドメインシフトの両条件で,提案項に規則化されたモデルでは,ロバスト性が顕著に向上した。
コードは、https://github.com/joaocarv/invariant-anomaly-detectionで入手できる。
関連論文リスト
- Improving Distribution Alignment with Diversity-based Sampling [0.0]
ドメインシフトは機械学習においてユビキタスであり、実際のデータにデプロイすると、モデルのパフォーマンスが大幅に低下する可能性がある。
本稿では,各サンプル小バッチの多様性を誘導することにより,これらの推定値を改善することを提案する。
同時にデータのバランスを保ち、勾配のばらつきを低減し、それによってモデルの一般化能力を高める。
論文 参考訳(メタデータ) (2024-10-05T17:26:03Z) - SoftCVI: Contrastive variational inference with self-generated soft labels [2.5398014196797614]
変分推論とマルコフ連鎖モンテカルロ法がこのタスクの主要なツールである。
ソフトコントラスト変動推論(SoftCVI)を導入し、コントラスト推定フレームワークを用いて変動対象のファミリーを導出する。
我々は、SoftCVIを用いて、訓練や大量発見に安定な目標を定式化することができ、他の変分アプローチよりも頻繁に優れた推論が可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-22T14:54:12Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts [3.7819322027528113]
本稿では,教師付きコントラスト学習を用いた新たな正規化手法を提案する。
サブポピュレーションシフトや領域一般化などの分布シフトをエミュレートするベンチマークデータセットの実験は,提案手法の利点を実証している。
論文 参考訳(メタデータ) (2023-04-07T01:45:09Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
我々は,複数の領域からのデータを活用することで,分散シフトを処理するシステムキャリブレーションモデルを開発した。
提案手法は,分布シフト時のキャリブレーションを改善するために,領域内のロバスト性を利用する。
論文 参考訳(メタデータ) (2022-06-06T17:32:12Z) - Certifying Model Accuracy under Distribution Shifts [151.67113334248464]
本稿では,データ分布の有界ワッサースタインシフトの下でのモデルの精度について,証明可能なロバスト性保証を提案する。
変換空間におけるモデルの入力をランダム化する単純な手順は、変換の下での分布シフトに対して確実に堅牢であることを示す。
論文 参考訳(メタデータ) (2022-01-28T22:03:50Z) - Covariate Shift in High-Dimensional Random Feature Regression [44.13449065077103]
共変量シフトは、堅牢な機械学習モデルの開発において重要な障害である。
現代の機械学習の文脈における理論的理解を示す。
論文 参考訳(メタデータ) (2021-11-16T05:23:28Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
未知の真のターゲットラベルのプロキシとして、ドメイン不変の予測器のセットを使用します。
結果として生じるリスク見積の誤差は、プロキシモデルのターゲットリスクに依存する。
論文 参考訳(メタデータ) (2020-07-06T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。