RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
- URL: http://arxiv.org/abs/2304.03483v4
- Date: Tue, 7 May 2024 18:14:23 GMT
- Title: RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
- Authors: Berk Iskender, Marc L. Klasky, Yoram Bresler,
- Abstract summary: In dynamic tomography, only a single projection at a single view angle may be available at a time.
We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem.
- Score: 6.527016551650136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are non-parametric factorized low rank models, also known as partially separable models (PSMs), which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show performance advantages of RED-PSM in a cardiac dynamic MRI setting.
Related papers
- Enhancing Dynamic CT Image Reconstruction with Neural Fields Through Explicit Motion Regularizers [0.0]
We show the benefits of introducing explicit PDE-based motion regularizers in 2D+time computed tomography for the optimization of neural fields.
We also compare neural fields against a grid-based solver and show that the former outperforms the latter.
arXiv Detail & Related papers (2024-06-03T13:07:29Z) - Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
We propose a novel scheme for dynamic MRI representation, named Graph Image Prior'' (GIP)
GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame.
A graph convolutional network is utilized for feature fusion and image generation.
arXiv Detail & Related papers (2024-03-23T08:57:46Z) - GAN-based Image Compression with Improved RDO Process [20.00340507091567]
We present a novel GAN-based image compression approach with improved rate-distortion optimization process.
To achieve this, we utilize the DISTS and MS-SSIM metrics to measure perceptual degeneration in color, texture, and structure.
The proposed method outperforms the existing GAN-based methods and the state-of-the-art hybrid (i.e., VVC)
arXiv Detail & Related papers (2023-06-18T03:21:11Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
We propose a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) to reconstruct highly under-sampled measurements.
More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing.
arXiv Detail & Related papers (2022-12-15T03:04:48Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Deep Low-rank Prior in Dynamic MR Imaging [30.70648993986445]
We introduce two novel schemes to introduce the learnable low-rank prior into deep network architectures.
In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net.
In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks.
arXiv Detail & Related papers (2020-06-22T09:26:10Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.