Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction
- URL: http://arxiv.org/abs/2403.15770v3
- Date: Tue, 24 Sep 2024 02:51:43 GMT
- Title: Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction
- Authors: Zhongsen Li, Wenxuan Chen, Shuai Wang, Chuyu Liu, Qing Zou, Rui Li,
- Abstract summary: We propose a novel scheme for dynamic MRI representation, named Graph Image Prior'' (GIP)
GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame.
A graph convolutional network is utilized for feature fusion and image generation.
- Score: 10.330083869344445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inductive bias of the convolutional neural network (CNN) can be a strong prior for image restoration, which is known as the Deep Image Prior (DIP). Recently, DIP is utilized in unsupervised dynamic MRI reconstruction, which adopts a generative model from the latent space to the image space. However, existing methods usually use a pyramid-shaped CNN generator shared by all frames, embedding the temporal modeling within the latent space, which may hamper the model expression capability. In this work, we propose a novel scheme for dynamic MRI representation, named ``Graph Image Prior'' (GIP). GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame, and then exploits the spatio-temporal correlations within the feature space parameterized by a graph model. A graph convolutional network is utilized for feature fusion and dynamic image generation. In addition, we devise an ADMM algorithm to alternately optimize the images and the network parameters to improve the reconstruction performance. Experiments were conducted on cardiac cine MRI reconstruction, which demonstrate that GIP outperforms compressed sensing methods and other DIP-based unsupervised methods, significantly reducing the performance gap with state-of-the-art supervised algorithms. Moreover, GIP displays superior generalization ability when transferred to a different reconstruction setting, without the need for any additional data.
Related papers
- Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
We propose a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) to reconstruct highly under-sampled measurements.
More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing.
arXiv Detail & Related papers (2022-12-15T03:04:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Geometric Approaches to Increase the Expressivity of Deep Neural
Networks for MR Reconstruction [41.62169556793355]
Deep learning approaches have been extensively investigated to reconstruct images from accelerated magnetic resonance image (MRI) acquisition.
It is not clear how to choose a suitable network architecture to balance the trade-off between network complexity and performance.
This paper proposes a systematic geometric approach using bootstrapping and subnetwork aggregation to increase the expressivity of the underlying neural network.
arXiv Detail & Related papers (2020-03-17T14:18:37Z) - Neural Architecture Search for Compressed Sensing Magnetic Resonance
Image Reconstruction [36.636219616998225]
We propose a novel and efficient network for the MR image reconstruction problem via NAS instead of manual attempts.
Experimental results show that our searched network can produce better reconstruction results compared to previous state-of-the-art methods.
Our proposed method can reach a better trade-off between cost and reconstruction performance for MR reconstruction problem with good generalizability.
arXiv Detail & Related papers (2020-02-22T04:40:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.