論文の概要: Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition
- arxiv url: http://arxiv.org/abs/2304.03550v2
- Date: Fri, 13 Oct 2023 13:38:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 17:55:02.627876
- Title: Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition
- Title(参考訳): ロバストなSAR車両認識のための階層的異方性アライメントネットワーク
- Authors: Weijie Li, Wei Yang, Wenpeng Zhang, Tianpeng Liu, Yongxiang Liu, Li
Liu
- Abstract要約: HDANetは機能障害とアライメントを統合フレームワークに統合する。
提案手法は,MSTARデータセットにおいて,9つの動作条件にまたがる顕著なロバスト性を示す。
- 参考スコア(独自算出の注目度): 18.38295403066007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle recognition is a fundamental problem in SAR image interpretation.
However, robustly recognizing vehicle targets is a challenging task in SAR due
to the large intraclass variations and small interclass variations.
Additionally, the lack of large datasets further complicates the task. Inspired
by the analysis of target signature variations and deep learning
explainability, this paper proposes a novel domain alignment framework named
the Hierarchical Disentanglement-Alignment Network (HDANet) to achieve
robustness under various operating conditions. Concisely, HDANet integrates
feature disentanglement and alignment into a unified framework with three
modules: domain data generation, multitask-assisted mask disentanglement, and
domain alignment of target features. The first module generates diverse data
for alignment, and three simple but effective data augmentation methods are
designed to simulate target signature variations. The second module
disentangles the target features from background clutter using the
multitask-assisted mask to prevent clutter from interfering with subsequent
alignment. The third module employs a contrastive loss for domain alignment to
extract robust target features from generated diverse data and disentangled
features. Lastly, the proposed method demonstrates impressive robustness across
nine operating conditions in the MSTAR dataset, and extensive qualitative and
quantitative analyses validate the effectiveness of our framework.
- Abstract(参考訳): 車両認識は、SAR画像解釈における根本的な問題である。
しかし、SARでは、大きなクラス内変動と小さなクラス間変動のため、頑健な車両目標認識は難しい課題である。
さらに、大きなデータセットがないため、タスクはさらに複雑になる。
本稿では,ターゲットシグネチャのばらつきと深層学習説明可能性の分析に着想を得て,階層的異方性調整ネットワーク(hdanet)と呼ばれる新しいドメインアライメントフレームワークを提案する。
正確には、HDANetは機能障害とアライメントを、ドメインデータ生成、マルチタスク支援マスクのアライメント、ターゲット機能のドメインアライメントという3つのモジュールで統合したフレームワークに統合する。
最初のモジュールはアライメントのための多様なデータを生成し、ターゲットシグネチャのバリエーションをシミュレートするために3つのシンプルで効果的なデータ拡張手法が設計されている。
第2のモジュールは、マルチタスク支援マスクを使用して、背景クラッタからターゲット特徴を切り離して、その後のアライメントに干渉しないようにする。
第3のモジュールはドメインアライメントに対照的な損失を導入し、生成された多様なデータから堅牢なターゲット特徴を抽出する。
最後に,提案手法は,mstarデータセット内の9つの動作条件にまたがる印象的なロバスト性を示し,本手法の有効性を検証する広範な質的定量的解析を行った。
関連論文リスト
- CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection [16.96201890965781]
クロスドメインオブジェクト検出アルゴリズムは通常、劇的なパフォーマンス低下に悩まされる。
本稿では,ラベル付きシミュレーション(ソース)からラベル付き現実(ターゲット)ドメインへモデルを転送する新しいフレームワークを提案する。
実験結果から,提案手法は3次元物体検出モデルの実領域適応能力を大幅に向上することが示された。
論文 参考訳(メタデータ) (2024-06-26T07:31:16Z) - Multimodal Collaboration Networks for Geospatial Vehicle Detection in Dense, Occluded, and Large-Scale Events [29.86323896541765]
大規模災害では, 災害現場の物体検出能力に頼って, 最適な救助経路の計画を立てる。
既存の手法は、通常RGBのモダリティに基づいており、混み合った環境で同じ色やテクスチャでターゲットを区別するのに苦労している。
密集・隠蔽車検出のためのマルチモーダル協調ネットワーク MuDet を提案する。
論文 参考訳(メタデータ) (2024-05-14T00:51:15Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
異常セグメンテーションは、画像中の非定型物体を識別する上で重要な役割を担っている。
既存の手法は合成データに顕著な結果を示すが、合成データドメインと実世界のデータドメインの相違を考慮できないことが多い。
シーンと個々のサンプルレベルの両方で、ドメイン間の機能を調和させるのに適した、マルチグラニュラリティ・クロスドメインアライメントフレームワークを導入します。
論文 参考訳(メタデータ) (2023-08-16T22:54:49Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - Benchmarking the Robustness of LiDAR Semantic Segmentation Models [78.6597530416523]
本稿では,LiDARセマンティックセグメンテーションモデルのロバスト性を,様々な汚職の下で包括的に解析することを目的とする。
本稿では,悪天候,計測ノイズ,デバイス間不一致という3つのグループで16のドメイン外LiDAR破損を特徴とするSemanticKITTI-Cというベンチマークを提案する。
我々は、単純だが効果的な修正によってロバスト性を大幅に向上させるロバストLiDARセグメンテーションモデル(RLSeg)を設計する。
論文 参考訳(メタデータ) (2023-01-03T06:47:31Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
本稿では、ソースとターゲットドメイン間のドメインギャップを埋めるために、教師なしのドメイン適応フレームワークを提案する。
天候の歪みをシミュレートするデータ拡張方式を用いて、ドメインの混乱を増し、ソースデータへの過度な適合を防止する。
DENSEデータセットで行った実験は、我々の手法がドメインギャップを大幅に軽減できることを示している。
論文 参考訳(メタデータ) (2022-03-07T18:10:40Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
我々は、Divide-and-Merge Spindle Network (DMSN)と呼ばれる、より高速なR-CNNベースのフレームワークを提案する。
DMSNはドメイン非ネイティブを同時に強化し、識別力を維持することができる。
擬似目標部分集合の最適パラメータを近似する新しい擬似学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-30T03:17:20Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。