論文の概要: CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
- arxiv url: http://arxiv.org/abs/2406.18129v2
- Date: Mon, 30 Sep 2024 07:07:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:59.976924
- Title: CTS: Sim-to-Real Unsupervised Domain Adaptation on 3D Detection
- Title(参考訳): CTS: 3次元検出における教師なしドメイン適応のシミュレート
- Authors: Meiying Zhang, Weiyuan Peng, Guangyao Ding, Chenyang Lei, Chunlin Ji, Qi Hao,
- Abstract要約: 本稿では,ラベル付きシミュレーションからラベル付き現実領域へモデルを転送するための新しいフレームワークを提案する。
実験結果から,提案手法は3次元物体検出モデルの実領域適応能力を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 16.96201890965781
- License:
- Abstract: Simulation data can be accurately labeled and have been expected to improve the performance of data-driven algorithms, including object detection. However, due to the various domain inconsistencies from simulation to reality (sim-to-real),cross-domain object detection algorithms usually suffer from dramatic performance drops. While numerous unsupervised domain adaptation (UDA) methods have been developed to address cross-domain tasks between real-world datasets, progress in sim-to-real remains limited. This paper presents a novel Complex-to-Simple (CTS) framework to transfer models from labeled simulation (source) to unlabeled reality (target) domains. Based on a two-stage detector, the novelty of this work is threefold: 1) developing fixed-size anchor heads and RoI augmentation to address size bias and feature diversity between two domains, thereby improving the quality of pseudo-label; 2) developing a novel corner-format representation of aleatoric uncertainty (AU) for the bounding box, to uniformly quantify pseudo-label quality; 3) developing a noise-aware mean teacher domain adaptation method based on AU, as well as object-level and frame-level sampling strategies, to migrate the impact of noisy labels. Experimental results demonstrate that our proposed approach significantly enhances the sim-to-real domain adaptation capability of 3D object detection models, outperforming state-of-the-art cross-domain algorithms, which are usually developed for real-to-real UDA tasks.
- Abstract(参考訳): シミュレーションデータは正確にラベル付けすることができ、オブジェクト検出を含むデータ駆動アルゴリズムの性能を向上させることが期待されている。
しかし、シミュレーションから現実(シミュレート・トゥ・リアル)までの様々な領域の不整合のため、クロスドメイン・オブジェクト検出アルゴリズムは通常、劇的なパフォーマンス低下に悩まされる。
実世界のデータセット間のドメイン間タスクに対処するために、多くの教師なしドメイン適応(UDA)手法が開発されているが、sim-to-realの進歩は限られている。
本稿では,ラベル付きシミュレーション(ソース)から未ラベルの現実(ターゲット)ドメインへモデルを転送する,新しいCTSフレームワークを提案する。
2段階検出器をベースとしたこの研究の斬新さは次の3つです。
1) 固定サイズのアンカーヘッドとRoI拡張により,2つのドメイン間のサイズバイアスと特徴の多様性に対処し,擬似ラベルの品質を向上する。
2) 擬似ラベル品質を均一に定量化するために, 境界箱の新規な隅形状不確実性表現(AU)を開発する。
3) 雑音認識型平均教師ドメイン適応手法と, 対象レベルおよびフレームレベルサンプリング手法を開発し, 雑音ラベルの影響を移行した。
実験の結果,提案手法は3次元オブジェクト検出モデルのシム・ツー・リアル領域適応能力を大幅に向上させ,通常,実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
関連論文リスト
- STAL3D: Unsupervised Domain Adaptation for 3D Object Detection via Collaborating Self-Training and Adversarial Learning [21.063779140059157]
既存の3Dオブジェクト検出は、ドメインギャップのため、高価なアノテーションコストと未知のデータへの転送性に悩まされる。
STAL3Dと呼ばれるSTとALの協調による3次元オブジェクト検出のための新しい非教師付きドメイン適応フレームワークを提案し、擬似ラベルと特徴分布アライメントの相補的利点を浮き彫りにした。
論文 参考訳(メタデータ) (2024-06-27T17:43:35Z) - Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDAは、3Dや深度データを使わずに、ニュアンスドライデンのターゲットドメインに適応できる手法である。
対象のカテゴリを単純な立方体メッシュとして表現し、ニューラル特徴活性化の生成モデルを利用する。
本手法は,グローバルな擬似ラベル付きデータセットの微調整を軽度な仮定でシミュレートする。
論文 参考訳(メタデータ) (2024-01-19T17:48:05Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
ポイントクラウドからの3Dオブジェクト検出は、安全クリティカルな自動運転において不可欠である。
本稿では,密度依存性ドメインギャップに対処する密度依存性ドメイン適応フレームワークを提案する。
3つの広く採用されている3次元オブジェクト検出データセットの実験結果から,提案手法が最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T06:33:07Z) - Hierarchical Disentanglement-Alignment Network for Robust SAR Vehicle
Recognition [18.38295403066007]
HDANetは機能障害とアライメントを統合フレームワークに統合する。
提案手法は,MSTARデータセットにおいて,9つの動作条件にまたがる顕著なロバスト性を示す。
論文 参考訳(メタデータ) (2023-04-07T09:11:29Z) - Bridging the Sim2Real gap with CARE: Supervised Detection Adaptation
with Conditional Alignment and Reweighting [72.75792823726479]
条件整合と再重み付けによる条件付きドメイン翻訳(CARE)を提案する。
本稿では,提案アルゴリズムの解析的正当性を示し,標準ベンチマーク上での競合手法よりも強い利得を示す。
論文 参考訳(メタデータ) (2023-02-09T18:39:28Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Unsupervised Domain Adaptation for Monocular 3D Object Detection via
Self-Training [57.25828870799331]
我々は、Mono3D上での教師なしドメイン適応のための新しい自己学習フレームワークSTMono3Dを提案する。
対象ドメイン上で適応的な擬似ラベルを生成するための教師学生パラダイムを開発する。
STMono3Dは、評価されたすべてのデータセットで顕著なパフォーマンスを達成し、KITTI 3Dオブジェクト検出データセットの完全な教師付き結果を超えています。
論文 参考訳(メタデータ) (2022-04-25T12:23:07Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
ディープラーニングに基づく3Dオブジェクト検出は、大規模な自律走行データセットの出現によって、前例のない成功を収めた。
既存の3Dドメイン適応検出手法は、しばしばターゲットのドメインアノテーションへの事前アクセスを前提とします。
我々は、ソースドメインアノテーションのみを利用する、より現実的な、教師なしの3Dドメイン適応検出について研究する。
論文 参考訳(メタデータ) (2021-07-23T17:19:23Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。