Overcoming Overconfidence for Active Learning
- URL: http://arxiv.org/abs/2308.10571v1
- Date: Mon, 21 Aug 2023 09:04:54 GMT
- Title: Overcoming Overconfidence for Active Learning
- Authors: Yujin Hwang, Won Jo, Juyoung Hong, and Yukyung Choi
- Abstract summary: We present two novel methods to address the problem of overconfidence that arises in the active learning scenario.
The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution.
The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions.
- Score: 1.2776312584227847
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is not an exaggeration to say that the recent progress in artificial
intelligence technology depends on large-scale and high-quality data.
Simultaneously, a prevalent issue exists everywhere: the budget for data
labeling is constrained. Active learning is a prominent approach for addressing
this issue, where valuable data for labeling is selected through a model and
utilized to iteratively adjust the model. However, due to the limited amount of
data in each iteration, the model is vulnerable to bias; thus, it is more
likely to yield overconfident predictions. In this paper, we present two novel
methods to address the problem of overconfidence that arises in the active
learning scenario. The first is an augmentation strategy named
Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the
limited training distribution. The second is a selection strategy named Ranked
Margin Sampling (RankedMS), which prevents choosing data that leads to overly
confident predictions. Through various experiments and analyses, we are able to
demonstrate that our proposals facilitate efficient data selection by
alleviating overconfidence, even though they are readily applicable.
Related papers
- Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
arXiv Detail & Related papers (2024-07-30T23:43:59Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Uncertainty-Aware Bootstrap Learning for Joint Extraction on
Distantly-Supervised Data [36.54640096189285]
bootstrap learning is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths.
We first explore instance-level data uncertainty to create an initial high-confident examples.
During bootstrap learning, we propose self-ensembling as a regularizer to alleviate inter-model uncertainty produced by noisy labels.
arXiv Detail & Related papers (2023-05-05T20:06:11Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Two-stage Modeling for Prediction with Confidence [0.0]
It is difficult to generalize the performance of neural networks under the condition of distributional shift.
We propose a novel two-stage model for the potential distribution shift problem.
We show that our model offers reliable predictions for the vast majority of datasets.
arXiv Detail & Related papers (2022-09-19T08:48:07Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
We propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions.
We propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data.
Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets.
arXiv Detail & Related papers (2021-07-07T04:14:24Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.