Mechanical photoluminescence excitation spectra of a strongly driven
spin-mechanical system
- URL: http://arxiv.org/abs/2304.03922v1
- Date: Sat, 8 Apr 2023 05:38:52 GMT
- Title: Mechanical photoluminescence excitation spectra of a strongly driven
spin-mechanical system
- Authors: Xinzhu Li and Hailin Wang
- Abstract summary: We report experimental studies of a driven spin-mechanical system in which a nitrogen vacancy (NV) center couples to out-of-plane vibrations of a diamond cantilever.
Photoluminescence excitation studies show that in the unresolved sideband regime and under strong resonant mechanical driving, the excitation spectra of a NV optical transition feature two spectrally sharp peaks.
- Score: 2.4366811507669124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report experimental studies of a driven spin-mechanical system, in which a
nitrogen vacancy (NV) center couples to out-of-plane vibrations of a diamond
cantilever through the excited-state deformation potential. Photoluminescence
excitation studies show that in the unresolved sideband regime and under strong
resonant mechanical driving, the excitation spectra of a NV optical transition
feature two spectrally sharp peaks, corresponding to the two turning points of
the oscillating cantilever. In the limit that the strain-induced frequency
separation between the two peaks far exceeds the NV zero-phonon linewidth, the
spectral position of the individual peak becomes sensitive to minute detuning
between the mechanical resonance and the external driving force. For a fixed
optical excitation frequency near the NV transition, NV fluorescence as a
function of mechanical detuning features resonances with a linewidth that can
be orders of magnitude smaller than the intrinsic linewidth of the mechanical
mode. This enhanced sensitivity to mechanical detuning can potentially provide
an effective mechanism for mechanical sensing, for example, mass sensing via
measurements of induced changes in the mechanical oscillator frequency.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - PT Symmetry, induced mechanical lasing and tunable force sensing in a coupled-mode optically levitated nanoparticle [2.058673763571808]
We investigate PT symmetry, induced mechanical lasing and force sensing in an optically levitated nanoparticles with coupled oscillation modes.
We show that such a coupling can lead to PT-symmetric mechanical behavior for experimentally realistic parameters.
We demonstrate that ultra-sensitive tunable force sensing can be engineered in the system.
arXiv Detail & Related papers (2024-04-17T04:49:19Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Optical coupling control of isolated mechanical resonators [0.0]
We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard optomechanical interaction.
We show that the quantum model, under this parameter range and external optical driving, may be approximated into parametric interaction models for all involved modes.
arXiv Detail & Related papers (2023-05-26T03:32:01Z) - Dissipative Optomechanics in High-Frequency Nanomechanical Resonators [0.0]
We show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth.
Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works.
arXiv Detail & Related papers (2022-12-30T03:16:31Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Broadband Dichromatic Variational Measurement [0.0]
We introduce a technique of continuous vybroadband back action avoiding measurements.
The method involves a dichromatic optical probe resonant with the MSI modes.
We show that analyzing each of the harmonics of the probe reflected from the mechanical system separately and postprocessing the measurement results allows excluding the back action in a broad frequency band.
arXiv Detail & Related papers (2021-05-06T09:04:35Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.