Noise-Limited Sensitivity in Cavity Optomechanical Molecular Sensing Enabled by Quantum Zero-Point Displacement Coupling and Strong Photon-Phonon Interaction for Chiral Detection
- URL: http://arxiv.org/abs/2507.19982v1
- Date: Sat, 26 Jul 2025 15:35:12 GMT
- Title: Noise-Limited Sensitivity in Cavity Optomechanical Molecular Sensing Enabled by Quantum Zero-Point Displacement Coupling and Strong Photon-Phonon Interaction for Chiral Detection
- Authors: Giuseppina Simone,
- Abstract summary: This work presents a quantum-limited optomechanical sensing platform for real-time detection and discrimination of chiral molecules.<n>The system achieves ultrahigh displacement sensitivity that approaches the fundamental quantum limit.<n>Time-resolved Raman spectroscopy reveals enantioselective dynamics arising from asymmetric optomechanical interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a quantum-limited optomechanical sensing platform for real-time detection and discrimination of chiral molecules, based on a multilayer hybrid plasmonic-mechanical resonator. Leveraging quantum zero-point motion and engineered photon-phonon interactions, the system achieves ultrahigh displacement sensitivity that approaches the fundamental quantum limit. The multilayer architecture, composed of alternating dielectric and metallic films, supports mechanical resonances with quality factors reaching approximately ten thousand in the megahertz frequency range. These resonances coherently modulate the optical field through radiation pressure and dynamical backaction. Power spectral density measurements reveal distinct mechanical peaks at 0.68, 2.9, 4.3, 5.5, and 6.8 MHz, with optomechanical coupling strengths exceeding twice the intrinsic baseline, enabling highly efficient signal transduction. Lorentzian fitting confirms the presence of sharp mechanical linewidths, while the total force noise, including thermal, shot, and technical contributions, remains below the threshold required for detecting sub-piconewton forces. Time-resolved Raman spectroscopy, which is typically insensitive to chirality, here reveals enantioselective dynamics arising from asymmetric optomechanical interactions, enabling clear spectral distinction between d- and l-enantiomers. Finite-element simulations validate the strong spatial overlap between optical confinement and mechanical displacement modes. This platform offers a scalable and tunable approach to quantum-limited, high-sensitivity chiral molecule detection, with applications in coherent control, precision spectroscopy, and chemical sensing.
Related papers
- Bipartite and tripartite entanglement in an optomechanical ring cavity [0.0]
Entanglement serves as a core resource for quantum information technologies.
This study gives a unifying description of the stationary bipartite and tripartite entanglement in a coupled optomechanical ring cavity.
arXiv Detail & Related papers (2024-11-07T21:30:44Z) - Optimizing mechanical entanglement using squeezing and parametric amplification [0.0]
We propose a scheme of an optomechanical system that optimize entanglement in nanomechanical resonators.<n>The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.