Photometric Correction for Infrared Sensors
- URL: http://arxiv.org/abs/2304.03930v2
- Date: Fri, 12 Jan 2024 19:14:50 GMT
- Title: Photometric Correction for Infrared Sensors
- Authors: Jincheng Zhang, Kevin Brink, Andrew R Willis
- Abstract summary: This article proposes a photometric correction model for infrared sensors based on temperature constancy.
Experiments show that the reconstruction quality from the corrected infrared imagery achieves performance on par with state-of-the-art reconstruction using RGB sensors.
- Score: 1.170732359523702
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Infrared thermography has been widely used in several domains to capture and
measure temperature distributions across surfaces and objects. This methodology
can be further expanded to 3D applications if the spatial distribution of the
temperature distribution is available. Structure from Motion (SfM) is a
photometric range imaging technique that makes it possible to obtain 3D
renderings from a cloud of 2D images. To explore the possibility of 3D
reconstruction via SfM from infrared images, this article proposes a
photometric correction model for infrared sensors based on temperature
constancy. Photometric correction is accomplished by estimating the scene
irradiance as the values from the solution to a differential equation for
microbolometer pixel excitation with unknown coefficients and initial
conditions. The model was integrated into an SfM framework and experimental
evaluations demonstrate the contribution of the photometric correction for
improving the estimates of both the camera motion and the scene structure.
Further, experiments show that the reconstruction quality from the corrected
infrared imagery achieves performance on par with state-of-the-art
reconstruction using RGB sensors.
Related papers
- Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis [11.793425521298488]
This paper introduces a physics-induced 3D Gaussian splatting method named Thermal3D-GS.
The first large-scale benchmark dataset for this field named Thermal Infrared Novel-view Synthesis dataset (TI-NSD) is created.
The results indicate that our method outperforms the baseline method with a 3.03 dB improvement in PSNR.
arXiv Detail & Related papers (2024-09-12T13:46:53Z) - ThermalNeRF: Thermal Radiance Fields [32.881758519242155]
We propose a unified framework for scene reconstruction from a set of LWIR and RGB images.
We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step.
We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects occluded in either the RGB or thermal channels.
arXiv Detail & Related papers (2024-07-22T02:51:29Z) - Thermal-NeRF: Neural Radiance Fields from an Infrared Camera [29.58060552299745]
We introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging.
We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods.
arXiv Detail & Related papers (2024-03-15T14:27:15Z) - Spatial super-resolution in nanosensing with blinking emitters [79.16635054977068]
We propose a method of spatial resolution enhancement in metrology with blinking fluorescent nanosensors.
We believe that blinking fluorescent sensing agents being complemented with the developed image analysis technique could be utilized routinely in the life science sector.
arXiv Detail & Related papers (2024-02-27T10:38:05Z) - Refined Equivalent Pinhole Model for Large-scale 3D Reconstruction from
Spaceborne CCD Imagery [1.4019041243188557]
We present a large-scale earth surface reconstruction pipeline for linear-array charge-coupled satellite imagery.
Results demonstrated that the reconstruction accuracy was proportional to the image size.
Our image refinement model significantly enhanced the accuracy and completeness of the reconstruction.
arXiv Detail & Related papers (2023-10-31T01:30:57Z) - Relightify: Relightable 3D Faces from a Single Image via Diffusion
Models [86.3927548091627]
We present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image.
In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent estimation.
arXiv Detail & Related papers (2023-05-10T11:57:49Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
We present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation.
The proposed method formulates the image rendering process using specific physically-based model(s) and optimize the surface's volumetric quantities on the actual surface.
arXiv Detail & Related papers (2022-10-21T19:09:08Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
We present a method for synthesizing novel views from a single 360-degree RGB-D image based on the neural radiance field (NeRF)
Experiments demonstrated that the proposed method can synthesize plausible novel views while preserving the features of the scene for both artificial and real-world data.
arXiv Detail & Related papers (2022-03-18T13:49:25Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z) - Online Photometric Calibration of Automatic Gain Thermal Infrared
Cameras [0.0]
We introduce an algorithm for online photometric calibration of thermal-infrared cameras.
Our proposed method does not require any specific driver/ hardware support.
We present this in the context of visual odometry and SLAM algorithms.
arXiv Detail & Related papers (2020-12-07T17:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.