ThermalNeRF: Thermal Radiance Fields
- URL: http://arxiv.org/abs/2407.15337v1
- Date: Mon, 22 Jul 2024 02:51:29 GMT
- Title: ThermalNeRF: Thermal Radiance Fields
- Authors: Yvette Y. Lin, Xin-Yi Pan, Sara Fridovich-Keil, Gordon Wetzstein,
- Abstract summary: We propose a unified framework for scene reconstruction from a set of LWIR and RGB images.
We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step.
We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects occluded in either the RGB or thermal channels.
- Score: 32.881758519242155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermal imaging has a variety of applications, from agricultural monitoring to building inspection to imaging under poor visibility, such as in low light, fog, and rain. However, reconstructing thermal scenes in 3D presents several challenges due to the comparatively lower resolution and limited features present in long-wave infrared (LWIR) images. To overcome these challenges, we propose a unified framework for scene reconstruction from a set of LWIR and RGB images, using a multispectral radiance field to represent a scene viewed by both visible and infrared cameras, thus leveraging information across both spectra. We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step using a simple calibration target. We demonstrate our method on real-world sets of RGB and LWIR photographs captured from a handheld thermal camera, showing the effectiveness of our method at scene representation across the visible and infrared spectra. We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects that are occluded in either the RGB or thermal channels. Please see https://yvette256.github.io/thermalnerf for video results as well as our code and dataset release.
Related papers
- TeX-NeRF: Neural Radiance Fields from Pseudo-TeX Vision [5.77388464529179]
We propose Ne-RF, a 3D reconstruction method using only infrared images.
We map the temperatures, emissivities (e), and textures (X) of the scene into the saturation (S), hue (H), and value (V) channels of the color space.
Novel view synthesis using the processed images has yielded excellent results.
arXiv Detail & Related papers (2024-10-07T09:43:28Z) - ThermalGaussian: Thermal 3D Gaussian Splatting [25.536611434289647]
We propose ThermalGaussian, the first thermal 3DGS approach capable of rendering high-quality images in RGB and thermal modalities.
We conduct comprehensive experiments to show that ThermalGaussian achieves photorealistic rendering of thermal images and improves the rendering quality of RGB images.
arXiv Detail & Related papers (2024-09-11T11:45:57Z) - IRSAM: Advancing Segment Anything Model for Infrared Small Target Detection [55.554484379021524]
Infrared Small Target Detection (IRSTD) task falls short in achieving satisfying performance due to a notable domain gap between natural and infrared images.
We propose the IRSAM model for IRSTD, which improves SAM's encoder-decoder architecture to learn better feature representation of infrared small objects.
arXiv Detail & Related papers (2024-07-10T10:17:57Z) - ThermoNeRF: Multimodal Neural Radiance Fields for Thermal Novel View Synthesis [5.66229031510643]
We propose ThermoNeRF, a novel approach to rendering new RGB and thermal views of a scene jointly.
To overcome the lack of texture in thermal images, we use paired RGB and thermal images to learn scene density.
We also introduce ThermoScenes, a new dataset to palliate the lack of available RGB+thermal datasets for scene reconstruction.
arXiv Detail & Related papers (2024-03-18T18:10:34Z) - Thermal-NeRF: Neural Radiance Fields from an Infrared Camera [29.58060552299745]
We introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging.
We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods.
arXiv Detail & Related papers (2024-03-15T14:27:15Z) - HDR-NeRF: High Dynamic Range Neural Radiance Fields [70.80920996881113]
We present High Dynamic Range Neural Radiance Fields (-NeRF) to recover an HDR radiance field from a set of low dynamic range (LDR) views with different exposures.
We are able to generate both novel HDR views and novel LDR views under different exposures.
arXiv Detail & Related papers (2021-11-29T11:06:39Z) - Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields [4.991042925292453]
We introduce a system to efficiently reconstruct thermal images.
The restoration of thermal images is critical for applications that involve safety, search and rescue, and military operations.
arXiv Detail & Related papers (2021-07-30T22:17:51Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
It has been proven that the reconstruction accuracy relies heavily on the spectral response of the RGB camera in use.
This paper explores the filter-array based color imaging mechanism of existing RGB cameras, and proposes to design the IR-cut filter properly for improved spectral recovery.
arXiv Detail & Related papers (2021-03-26T19:42:21Z) - Unsupervised Depth and Ego-motion Estimation for Monocular Thermal Video
using Multi-spectral Consistency Loss [76.77673212431152]
We propose an unsupervised learning method for the all-day depth and ego-motion estimation.
The proposed method exploits multi-spectral consistency loss to gives complementary supervision for the networks.
Networks trained with the proposed method robustly estimate the depth and pose from monocular thermal video under low-light and even zero-light conditions.
arXiv Detail & Related papers (2021-03-01T05:29:04Z) - A Large-Scale, Time-Synchronized Visible and Thermal Face Dataset [62.193924313292875]
We present the DEVCOM Army Research Laboratory Visible-Thermal Face dataset (ARL-VTF)
With over 500,000 images from 395 subjects, the ARL-VTF dataset represents to the best of our knowledge, the largest collection of paired visible and thermal face images to date.
This paper presents benchmark results and analysis on thermal face landmark detection and thermal-to-visible face verification by evaluating state-of-the-art models on the ARL-VTF dataset.
arXiv Detail & Related papers (2021-01-07T17:17:12Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.