Thermal-NeRF: Neural Radiance Fields from an Infrared Camera
- URL: http://arxiv.org/abs/2403.10340v1
- Date: Fri, 15 Mar 2024 14:27:15 GMT
- Title: Thermal-NeRF: Neural Radiance Fields from an Infrared Camera
- Authors: Tianxiang Ye, Qi Wu, Junyuan Deng, Guoqing Liu, Liu Liu, Songpengcheng Xia, Liang Pang, Wenxian Yu, Ling Pei,
- Abstract summary: We introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging.
We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods.
- Score: 29.58060552299745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Neural Radiance Fields (NeRFs) have demonstrated significant potential in encoding highly-detailed 3D geometry and environmental appearance, positioning themselves as a promising alternative to traditional explicit representation for 3D scene reconstruction. However, the predominant reliance on RGB imaging presupposes ideal lighting conditions: a premise frequently unmet in robotic applications plagued by poor lighting or visual obstructions. This limitation overlooks the capabilities of infrared (IR) cameras, which excel in low-light detection and present a robust alternative under such adverse scenarios. To tackle these issues, we introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging. By leveraging a thermal mapping and structural thermal constraint derived from the thermal characteristics of IR imaging, our method showcasing unparalleled proficiency in recovering NeRFs in visually degraded scenes where RGB-based methods fall short. We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods. Furthermore, we contribute a dataset for IR-based NeRF applications, paving the way for future research in IR NeRF reconstruction.
Related papers
- Contourlet Refinement Gate Framework for Thermal Spectrum Distribution Regularized Infrared Image Super-Resolution [54.293362972473595]
Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts.
Current approaches to address SR tasks are either dedicated to extracting RGB image features or assuming similar degradation patterns.
We propose a Contourlet refinement gate framework to restore infrared modal-specific features while preserving spectral distribution fidelity.
arXiv Detail & Related papers (2024-11-19T14:24:03Z) - TeX-NeRF: Neural Radiance Fields from Pseudo-TeX Vision [5.77388464529179]
We propose Ne-RF, a 3D reconstruction method using only infrared images.
We map the temperatures, emissivities (e), and textures (X) of the scene into the saturation (S), hue (H), and value (V) channels of the color space.
Novel view synthesis using the processed images has yielded excellent results.
arXiv Detail & Related papers (2024-10-07T09:43:28Z) - Thermal3D-GS: Physics-induced 3D Gaussians for Thermal Infrared Novel-view Synthesis [11.793425521298488]
This paper introduces a physics-induced 3D Gaussian splatting method named Thermal3D-GS.
The first large-scale benchmark dataset for this field named Thermal Infrared Novel-view Synthesis dataset (TI-NSD) is created.
The results indicate that our method outperforms the baseline method with a 3.03 dB improvement in PSNR.
arXiv Detail & Related papers (2024-09-12T13:46:53Z) - ThermalNeRF: Thermal Radiance Fields [32.881758519242155]
We propose a unified framework for scene reconstruction from a set of LWIR and RGB images.
We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step.
We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects occluded in either the RGB or thermal channels.
arXiv Detail & Related papers (2024-07-22T02:51:29Z) - ThermoNeRF: Multimodal Neural Radiance Fields for Thermal Novel View Synthesis [5.66229031510643]
We propose ThermoNeRF, a novel approach to rendering new RGB and thermal views of a scene jointly.
To overcome the lack of texture in thermal images, we use paired RGB and thermal images to learn scene density.
We also introduce ThermoScenes, a new dataset to palliate the lack of available RGB+thermal datasets for scene reconstruction.
arXiv Detail & Related papers (2024-03-18T18:10:34Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
We propose the irradiance fields from sparse LDR panoramic images to increase the observation counts for faithful geometry recovery.
Experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction.
arXiv Detail & Related papers (2023-12-26T08:10:22Z) - Aleth-NeRF: Illumination Adaptive NeRF with Concealing Field Assumption [65.96818069005145]
We introduce the concept of a "Concealing Field," which assigns transmittance values to the surrounding air to account for illumination effects.
In dark scenarios, we assume that object emissions maintain a standard lighting level but are attenuated as they traverse the air during the rendering process.
We present a comprehensive multi-view dataset captured under challenging illumination conditions for evaluation.
arXiv Detail & Related papers (2023-12-14T16:24:09Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
We introduce DehazeNeRF as a framework that robustly operates in hazy conditions.
We demonstrate successful multi-view haze removal, novel view synthesis, and 3D shape reconstruction where existing approaches fail.
arXiv Detail & Related papers (2023-03-20T18:03:32Z) - Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields [4.991042925292453]
We introduce a system to efficiently reconstruct thermal images.
The restoration of thermal images is critical for applications that involve safety, search and rescue, and military operations.
arXiv Detail & Related papers (2021-07-30T22:17:51Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.