GANHead: Towards Generative Animatable Neural Head Avatars
- URL: http://arxiv.org/abs/2304.03950v1
- Date: Sat, 8 Apr 2023 07:56:21 GMT
- Title: GANHead: Towards Generative Animatable Neural Head Avatars
- Authors: Sijing Wu, Yichao Yan, Yunhao Li, Yuhao Cheng, Wenhan Zhu, Ke Gao,
Xiaobo Li, Guangtao Zhai
- Abstract summary: GANHead is a novel generative head model that takes advantages of the fine-grained control over the explicit expression parameters.
It represents coarse geometry, fine-gained details and texture via three networks in canonical space.
It achieves superior performance on head avatar generation and raw scan fitting.
- Score: 31.35233032284164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To bring digital avatars into people's lives, it is highly demanded to
efficiently generate complete, realistic, and animatable head avatars. This
task is challenging, and it is difficult for existing methods to satisfy all
the requirements at once. To achieve these goals, we propose GANHead
(Generative Animatable Neural Head Avatar), a novel generative head model that
takes advantages of both the fine-grained control over the explicit expression
parameters and the realistic rendering results of implicit representations.
Specifically, GANHead represents coarse geometry, fine-gained details and
texture via three networks in canonical space to obtain the ability to generate
complete and realistic head avatars. To achieve flexible animation, we define
the deformation filed by standard linear blend skinning (LBS), with the learned
continuous pose and expression bases and LBS weights. This allows the avatars
to be directly animated by FLAME parameters and generalize well to unseen poses
and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves
superior performance on head avatar generation and raw scan fitting.
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - GPHM: Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction [47.113910048252805]
High-fidelity 3D human head avatars are crucial for applications in VR/AR, digital human, and film production.
Recent advances have leveraged morphable face models to generate animated head avatars, representing varying identities and expressions.
We introduce 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head.
arXiv Detail & Related papers (2024-07-21T06:03:11Z) - HeadStudio: Text to Animatable Head Avatars with 3D Gaussian Splatting [43.978358118034514]
HeadStudio is a framework that generates realistic and animatable avatars from text prompts.
The avatars are capable of rendering high-quality real-time views at a resolution of 1024 fps.
arXiv Detail & Related papers (2024-02-09T02:58:37Z) - PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting [17.78639236586134]
PSAvatar is a novel framework for animatable head avatar creation.
It employs 3D Gaussian for fine detail representation and high fidelity rendering.
We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time.
arXiv Detail & Related papers (2024-01-23T16:40:47Z) - Text-Guided Generation and Editing of Compositional 3D Avatars [59.584042376006316]
Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description.
Existing methods either lack realism, produce unrealistic shapes, or do not support editing.
arXiv Detail & Related papers (2023-09-13T17:59:56Z) - Generalizable One-shot Neural Head Avatar [90.50492165284724]
We present a method that reconstructs and animates a 3D head avatar from a single-view portrait image.
We propose a framework that not only generalizes to unseen identities based on a single-view image, but also captures characteristic details within and beyond the face area.
arXiv Detail & Related papers (2023-06-14T22:33:09Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
We propose IMavatar, a novel method for learning implicit head avatars from monocular videos.
Inspired by the fine-grained control mechanisms afforded by conventional 3DMMs, we represent the expression- and pose-related deformations via learned blendshapes and skinning fields.
We show quantitatively and qualitatively that our method improves geometry and covers a more complete expression space compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-14T15:30:32Z) - Neural Head Avatars from Monocular RGB Videos [0.0]
We present a novel neural representation that explicitly models the surface geometry and appearance of an animatable human avatar.
Our representation can be learned from a monocular RGB portrait video that features a range of different expressions and views.
arXiv Detail & Related papers (2021-12-02T19:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.