Progressive Volume Distillation with Active Learning for Efficient NeRF Architecture Conversion
- URL: http://arxiv.org/abs/2304.04012v2
- Date: Sat, 18 May 2024 07:30:16 GMT
- Title: Progressive Volume Distillation with Active Learning for Efficient NeRF Architecture Conversion
- Authors: Shuangkang Fang, Yufeng Wang, Yi Yang, Weixin Xu, Heng Wang, Wenrui Ding, Shuchang Zhou,
- Abstract summary: Neural Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes.
We propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method.
PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation.
- Score: 27.389511043400635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including the plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their combinations, entail distinct trade-offs. For instance, representations based on Hashtables enable faster rendering but lack clear geometric meaning, thereby posing challenges for spatial-relation-aware editing. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversion between diverse architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a three-level active learning technique provides continuous feedback from teacher to student during the distillation process, achieving high-performance outcomes. Experimental evidence showcases the effectiveness of our method across multiple benchmark datasets. For instance, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the MLP-based model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements like mobile devices. Project website: https://sk-fun.fun/PVD-AL.
Related papers
- FSD-BEV: Foreground Self-Distillation for Multi-view 3D Object Detection [33.225938984092274]
We propose a Foreground Self-Distillation (FSD) scheme that effectively avoids the issue of distribution discrepancies.
We also design two Point Cloud Intensification ( PCI) strategies to compensate for the sparsity of point clouds.
We develop a Multi-Scale Foreground Enhancement (MSFE) module to extract and fuse multi-scale foreground features.
arXiv Detail & Related papers (2024-07-14T09:39:44Z) - MoE-LLaVA: Mixture of Experts for Large Vision-Language Models [27.930351465266515]
We propose a simple yet effective training strategy MoE-Tuning for LVLMs.
MoE-LLaVA, a MoE-based sparse LVLM architecture, uniquely activates only the top-k experts through routers.
Experiments show the significant performance of MoE-LLaVA in a variety of visual understanding and object hallucination benchmarks.
arXiv Detail & Related papers (2024-01-29T08:13:40Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
We introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image.
Our method enables fully offline training with just noise/image pairs from the diffusion model.
We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a $5times$ larger ViT in terms of FID scores.
arXiv Detail & Related papers (2023-12-12T07:28:40Z) - AM-RADIO: Agglomerative Vision Foundation Model -- Reduce All Domains Into One [47.58919672657824]
We name this approach AM-RADIO (Agglomerative Model -- Reduce All Domains Into One)
We develop a novel architecture (E-RADIO) that exceeds the performance of its predecessors and is at least 7x faster than the teacher models.
Our comprehensive benchmarking process covers downstream tasks including ImageNet classification, ADE20k semantic segmentation, COCO object detection and LLaVa-1.5 framework.
arXiv Detail & Related papers (2023-12-10T17:07:29Z) - ToddlerDiffusion: Interactive Structured Image Generation with Cascaded Schrödinger Bridge [63.00793292863]
ToddlerDiffusion is a novel approach to decomposing the complex task of RGB image generation into simpler, interpretable stages.
Our method, termed ToddlerDiffusion, cascades modality-specific models, each responsible for generating an intermediate representation.
ToddlerDiffusion consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-24T15:20:01Z) - One-for-All: Bridge the Gap Between Heterogeneous Architectures in
Knowledge Distillation [69.65734716679925]
Knowledge distillation has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme.
Most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family.
We propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures.
arXiv Detail & Related papers (2023-10-30T11:13:02Z) - SimDistill: Simulated Multi-modal Distillation for BEV 3D Object
Detection [56.24700754048067]
Multi-view camera-based 3D object detection has become popular due to its low cost, but accurately inferring 3D geometry solely from camera data remains challenging.
We propose a Simulated multi-modal Distillation (SimDistill) method by carefully crafting the model architecture and distillation strategy.
Our SimDistill can learn better feature representations for 3D object detection while maintaining a cost-effective camera-only deployment.
arXiv Detail & Related papers (2023-03-29T16:08:59Z) - One is All: Bridging the Gap Between Neural Radiance Fields
Architectures with Progressive Volume Distillation [26.144617488670963]
Neural Radiance Fields (NeRF) methods have proved effective as compact, high-quality and versatile representations for 3D scenes.
Various neural architectures are vying for the core structure of NeRF, including the plain Multi-Layer Perceptron (MLP), sparses, low-rank tensors, hashtables and their compositions.
In this paper, we propose Progressive Volume Distillation (PVD), a systematic distillation method that allows any-to-any conversions.
arXiv Detail & Related papers (2022-11-29T07:21:15Z) - Reinforced Multi-Teacher Selection for Knowledge Distillation [54.72886763796232]
knowledge distillation is a popular method for model compression.
Current methods assign a fixed weight to a teacher model in the whole distillation.
Most of the existing methods allocate an equal weight to every teacher model.
In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled.
arXiv Detail & Related papers (2020-12-11T08:56:39Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.